

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

MODELLING INDIVIDUAL DECISIONS TO
SUPPORT THE EUROPEAN POLICIES RELATED
TO AGRICULTURE

This document was produced under the terms and conditions of Grant Agreement No. 817566 for the European
Commission. It does not necessary reflect the view of the European Union and in no way anticipates the
Commission’s future policy in this area.

Deliverable 3.1:
Specification of model
requirements
Protocols for code and data
AUTHORS Marc Müller (WR), David Schäfer (UBO), Wolfgang Britz (UBO),

Paolo Sckokai (UCSC), Alain Carpentier (INRAE), Fabienne
Femenia (INRAE), Frank Offermann (THUENEN), Scarlett Wang
(WU), Frederic Ang (WU), Alfons Oude-Lansink (WU),
Christoph Pahmeyer (UBO)

APPROVED BY WP MANAGER: John Helming (WR)

DATE OF APPROVAL: 26.08.2021

APPROVED BY PROJECT
COORDINATOR:

Hans van Meijl (WR)

DATE OF APPROVAL: 26.08.2021

CALL H2020-RUR-2018-2 Rural Renaissance

WORK PROGRAMME
Topic RUR-04-2018

Analytical tools and models to support policies related to
agriculture and food - RIA Research and Innovation action

PROJECT WEB SITE: https://mind-step.eu

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

This page is left blank deliberately

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

1

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 3

1. INTRODUCTION .. 5

2. MODULAR MODEL STRUCTURE .. 7

3. MODULAR ALIGNMENT OF TASKS IN WP3 ... 11

3.1. OVERARCHING MODEL STRUCTURE: CORE MODEL AND MODULES 11
3.2. FEATURES OF THE CORE MODEL ... 12
3.3. GHG MITIGATION OPTIONS AND FARMERS‘ CHOICES ... 14
3.4. CROP MANAGEMENT CHOICES ... 17

3.4.1. RANDOM PARAMETER MICRO-ECONOMETRIC MULTI-CROP MODELS, AND FARM SPECIFIC
CROP ACREAGE ELASTICITIES .. 18
3.4.2. ALLOCATING CHEMICAL INPUT USES TO CROPS .. 18
3.4.3. UNCOVERING ADOPTION AND CHARACTERISTICS OF CROP MANAGEMENT PRACTICES .. 21

3.5. RISK MANAGEMENT MODELS ... 22
4. THE IMPACT OF MODULARITY ON INTERACTIONS WITH WP4 AND WP5 .. 24

4.1. GENERAL GUIDELINES FOR BOTH OVERARCHING AND ECONOMETRIC MODEL
CONNECTIONS TO WP4 AND WP5 ... 25
4.2. REQUIREMENTS RELATED TO THE INTERFACE OF THE OVERARCHING MODEL AND
MODELS IN WP4/ WP5 ... 26
4.3. REQUIREMENTS RELATED TO THE INTERFACE OF THE ECONOMETRIC MODEL AND
MODELS IN WP4/ WP5 ... 28

5. QUALITY CRITERIA GUIDELINES FOR MODELS IN THE MIND STEP TOOLBOX
 .. 28

5.1. DOCUMENTATION ... 29
5.2. QUALITY MANAGEMENT ... 29

6. CONCLUSION .. 30

7. ACKNOWLEDGEMENTS .. 30

8. REFERENCES ... 30

APPENDIX 1: CODING GUIDELINES FOR CORE MODEL AND CONTRIBUTED
MODULES IN MIND STEP .. 35

APPENDIX 2: QUALITY CRITERIA FOR MODELS AND DATASETS ACCORDING TO
THE WAGENINGEN MODELLING GROUP. ... 42

APPENDIX 3: TESTING STRATEGY AS A KEY ASPECT IN QUALITY MANAGEMENT
OF AGRI-ECONOMIC MODELS .. 48

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

2

LIST OF FIGURES
FIGURE 1 MIND STEP: SYSTEM OF INTERLINKED MODELS CENTRED AROUND INDIVIDUAL DECISION
MAKING UNITS .. 6

FIGURE 2 TYPICAL MODEL WORKFLOW ... 7

FIGURE 3 MODULAR SETUP .. 10

FIGURE 4 MODULAR INTERACTIONS BETWEEN TASKS IN WP3 .. 12

FIGURE 5 TYPICAL LINEAR PROGRAMMING MODEL .. 13

FIGURE 6 MODULAR EXTENDED CORE MODEL .. 14

FIGURE 7 SELF-REGULATED MODEL OF BEHAVIOURAL CHANGE (ADAPTED FROM BAMBERG, 2013) 15

FIGURE 8 THREE PATHWAYS TO IMPROVE THE FARMDYN MODEL ... 16

FIGURE 9 DOUBLE HURDLE APPROACH .. 16

FIGURE 10 EXTENSIONS OF THE CORE MODEL BY USING RESULTS FROM MICRO-ECONOMETRIC
ANALYSES .. 17

FIGURE 11 ESTIMATED VERSUS OBSERVED FERTILIZER (LEFT) AND PESTICIDE (RIGHT) USES FOR WHEAT
(MARNE DATASET, 100€/HA, AT 2005 PRICE LEVELS) .. 20

FIGURE 12 ESTIMATED VERSUS OBSERVED FERTILIZER (LEFT) AND PESTICIDE (RIGHT) USES FOR
RAPESEED (MARNE DATASET, 100€/HA, AT 2005 PRICE LEVELS) ... 20

FIGURE 13 ESTIMATED VERSUS OBSERVED FERTILIZER (LEFT) AND PESTICIDE (RIGHT) USES FOR
POTATO (MARNE DATASET, 100€/HA, AT 2005 PRICE LEVELS) .. 20

FIGURE 14 MEAN-VARIANCE MODEL WITH CROP INSURANCE AS RISK MANAGEMENT INSTRUMENT
 23

FIGURE 15: CONNECTION OF MIND STEP IDM MODELS WP4 AND WP5 MODELS AS DEFINED IN THE
GRANT AGREEMENT ... 25

FIGURE 16: SIMPLIFIED ILLUSTRATION OF THE INTEGRATION OF FARMDYN AS A NEURAL NETWORK
INTO AGRIPOLIS AND THE RELATED REQUIREMENTS DEFINED BY THE LARGE-SCALE MODEL. 27

FIGURE 17: FARMDYN’S GRAPHICAL USER INTERFACE .. 51

FIGURE 18: HTML PAGE WITH RESULTS FROM TEST RUN GENERATOR BY GGIG 52

FIGURE 19: AUTOMATED REPORTING OF DIFFERENCES IN GGIG .. 53

FIGURE 20: COMMIT ACTIVITY OVER THE LAST DECADE .. 56

FIGURE 21: COMMIT ACTIVITY IN THE YEAR 2020 .. 56

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

3

ACRONYMS/ ABBREVIATIONS
ABM Agent Bases Modelling

API Application Programming Interface

BEFM Bio-Economic Farm Model

CAP Common Agricultural Policy

CMP Crop Management Practices

DEA Data Envelopment Analysis

EC European Commission

EU European Union

FADN Farm Accountancy Data Network

FarmAgriPoliS is an interactive game which simulates the development of an agricultural region
made up of farms

FARMDYN a dynamic mixed integer bio-economic farm scale model

FFS Farm Structure Survey

FLINT Farm-level Indicators for New Topics in policy evaluation

FSU Farm Structure Units

GHG Green House Gasses

GLOBIOM Global Biosphere Management Model

GUI Graphical User Interface

HSU Homogeneous Spatial Units

IDM Individual Decision Making

IFM Individual Farm Modelling

MAGNET Modular Applied GeNeral Equilibrium Tool

MIND STEP Modelling INdividual Decisions to Support The European Policies related to
agriculture

RMI Risk Management Instruments

SDG’s Sustainability Development Goals

SVN Apache Subversion, a software versioning and revision control system

VCS: Version control system

https://en.wikipedia.org/wiki/Apache_Subversion

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

4

EXECUTIVE SUMMARY
The MIND STEP project aims at developing a modular and extendable model structure. This requires
a clear definition of criteria that the involved models and tools should fulfil in order to fit into this
modular structure. This deliverable 3.1 provides an outline on how such a modular approach to model
integration can be realized in practice. The focus is on the interaction of methods and results
developed in the tasks within the MIND STEP work package 3 (WP3), titled “Development of modular
and customisable suit of models focussing on the IDM farming unit” and the relation to models
operating at higher organizational scales, like agent-based models that simulate the interactions of
groups of individual decision making (IDM) units or market-models targeting the responses of the
whole farming sector towards changing economic conditions at national level. The tasks within WP3
apply rather heterogeneous methods, ranging from micro-econometric analyses to the development
of a simulation model for individual farms. Integrating these approaches requires therefore a
conceptual structure that defines potential interfaces between them. This deliverable starts therefore
with an overview on how the principle of modular model development can be operationalized,
building on a literature review and an in-depth survey of four applied farm-level models (Britz et al.
2021). Based on this, the implications for task 3.2 (“Develop an overarching model structure for
modelling IDM farm units in the agricultural sector together with parallel working consortia”) are
derived in chapter 3. A major conceptual decision is to define a core simulation model to which the
methods and results from the other tasks in WP3 can be added in a modular manner. From the
literature review, it became clear that the most widely applied type of model for policy impact analysis
in agriculture on farm-level belongs to the family of mathematical programming models (MP). Based
on this, concepts how the more survey-based and econometric approaches in tasks 3.3, 3.4, and 3.5,
can be used to inform such an MP are outlined in the respective chapters. The implications of such a
modular design structure for models at higher organisational scales are discussed in chapter 4. Here,
general guidelines for modular simulation model and econometric model connections to WP4 and
WP5, the related requirements, and a feasible work-flow are derived.

A major challenge experienced in model development is the maintenance of models during and
beyond a typical project cycle. Thus, quality management of models play a critical role to facilitate the
collaboration between project members and to ensure that models are re-usable in future projects,
which is addressed in chapter 5. The main purpose of this last chapter is to highlight important aspects
of quality management within the MIND STEP project and to introduce the three appendices of this
deliverable. As it is intended to serve also as a reference handbook for the researchers and model
users involved in MIND STEP, these appendices provide guidelines for good coding practices (Appendix
1) as well as guidelines concerning documentation and transparency recommended by the
Wageningen Modelling Group. Appendix 3 provides an example for continued testing and quality
assurance as it is implemented at the FarmDyn modelling team at University of Bonn.

REPORT X.X

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

5

1. INTRODUCTION
MIND STEP aims at developing a modular and extendable model structure. This requires a clear
definition of criteria that models should fulfil in order to fit in this model structure (e.g. with respect
to specification of input and output data, modelling concepts, definition of terms, level of detail etc.).
These requirements are described here by a set of protocols for input-output relations with respect
to the functionality of the individual tool as well as requirements concerning interfaces between tools
in the MIND STEP model toolbox. The MIND STEP suite of models is intended to be a modular
framework where functionality can be added with additional models and data. The system of
interlinked models centred around individual decision-making units is pictured in Figure 1. The focus
of work package 3 (WP3) is on the behaviour of the individual farmer. Work package 4 (WP4) takes
these single farm models and combines them with regional level models, such as Agent Based Models
(ABMs), considering the interaction between farms and other actors in the agricultural food chain and
non-food chain actors. This task has strong links with data-related works in work package 2 (WP2) and
IT-related activities in work package 7 (WP7) regarding the technical implementation of models and
solutions for data exchange. A crucial input for this deliverable is the work by (Britz et al., 2021) who
elaborated on conceptual aspects of modular model design.

The modular framework should be flexible and sustainable in use (keeping complexity within certain
limits) and will allow further improvements as needs arise. Therefore, MIND STEP develops an
overarching IDM model structure that re-uses and improves existing modules. For that purpose, IDM
models like IFM-CAP (Louhichi et al., 2017), FarmDyn (Britz et al., 2016), AGRISPACE (Mittenzwei and
Britz, 2018) and the ABM AgriPoliS (Sahrbacher et al., 2014; Happe et al., 2006) are available in the
MIND STEP consortium and serve as useful starting points. AgriPoliS allows performing experiments
with artificial economic agents interacting in a dynamic and spatially explicit manner, especially
focussing on structural change and land markets. IFM-CAP is an EU-wide individual farm level model
aiming to assess the impacts of CAP towards 2020 on farm economics and environmental effects.

FarmDyn provides a flexible, modular template to simulate economically optimal production and
investment decisions in detail at individual farm level. The current version of FarmDyn (Rev. 2355,
16.06.2021) depicts various farm branches (arable cropping, pig fattening, piglet production, dairy,
beef fattening, biogas plants). The behaviour module maximizes the net present value over a longer
simulation horizon, taking into account detailed restrictions related to feeding, fertilisation, further
biophysical and environmental constraints and farm endowment constraints: labour, land, financial
assets, equipment and buildings. Integer variables depict indivisibilities in labour use and investment
decisions. FarmDyn consistently combines production, input use, and environmental constraints. As
such FarmDyn also acts as a test-bed for the integration of IDM data in current models like MAGNET
(Woltjer and Kuiper, 2014). Given the different policies (CAP, climate change, trade, environment,
energy, etc.) and policy issues (from local to global), different availability of data, different farm types,
different regions with different socio-economic and environmental characteristics, IDM models in
WP3 and WP4 focus on meaningful subjects, farm types and regions in the EU rather than the EU as a
whole.

Policies related to agriculture increase their scope to incorporate for example objectives of the Paris
climate agreement and the Sustainability Development Goals (SDGs). Modelling these policies require
models that offer both the individual farm level decisions regarding adoption of new technologies, risk
management, farm exit, etc. and the interactions between individual farms and with non-farmers e.g.
in the value chain.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

6

Feed

Yield

Rotation /
land use

Cost
accounting

Mind
Step

entry point

Parameter
aggregation

Farm exit

Factor
markets

Upscaling

Structural
change

Profitability
and

viability

Crop
management

Risk
management

Labour use
Green house

gasses

Societal
services

Investment

Supply chain

WP3 WP4

Figure 1 MIND STEP: system of interlinked models centred around individual decision making units

A prominent example is the future CAP beyond 2020, as it will include environmental and climate
practices as new conditionality tools for obtaining farmers income support. Climate policies require
IDM models with farm management mitigation options that are available to reduce greenhouse gas
emissions and the trade-offs with other environmental and animal welfare policies, as well as income
and risk (Spiegel et al., 2018). The modelling of GHG emissions and related mitigation options draws
on the technology rich IDM model FarmDyn (Britz et al., 2016; Lengers et al., 2014). Besides improved
modelling of legislation and mitigation options in Germany, the model will be extended to regions and
farming systems in the Netherlands focussing on mitigation of methane and nitrous oxide emissions.
The analysis of policies focussing on eco-system services and improving the conservation of the EUs
wild flora and fauna via preservation of farm-genetic resources, biodiversity and habitat require multi-
crop models.

Based on these general considerations regarding model coupling and modular design, the following
sections are structured around the tools developed in the MIND STEP work packages and provide
concepts on how these tools can be linked in a modular manner. To ensure that the modelling
activities in MIND STEP are interchangeable between groups of developers, practical issues like good
modelling practices, coding conventions, and quality management criteria discussed, and guidelines
are provided in the appendices.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

7

2. MODULAR MODEL STRUCTURE
The implementation of an IDM involves data preparation, model set-up and parameterization, and
reporting as depicted by Figure 2 Typical Model Workflow

, which are usually separated from model equations (separation of code from data). Particularly when
relying on statistical sources, data preparation must deal with outliers or missing entries that can
impair model execution, performance and more so plausibility of results. This underlines that the
generation of the model database is an integral part of the model workflow, particularly because it is
instrumental for the model set-up and parametrization in a subsequent step before the model itself
is solved.

Figure 2 Typical Model Workflow

Restricting data preparation, parameterization, model solving and reporting to the currently needed
farm branches, farming systems or relevant policies greatly eases model application. A block of
equations and variables with the related code-blocks for data preparation and reporting, for instance
for dairy farming, can be jointly understood as a module if it can be switched off without impairing
the use of the core model and other modules. The activation of modules can be data or user-driven.
Such a modular design is defined by Russell (2012) as:

“Modularity describes specific relationships between a whole system and its particular components. A modular
system consists of smaller parts (modules) that fit together within a predefined system of architecture. Modules
feature standardized interfaces, which facilitate their integration with the overarching system architecture. A
key feature of each module is that it should encapsulate (or “black box”) its messy internal details […] to display
only a consistent interface. The designers of modular systems are therefore able to swap modules in a ‘plug-and-
play’ manner, which increases the system’s flexibility.” (Russell, 2012)

Flexibility in configuring the IDM as the system discussed in here is required for a generic model. A
modeller may not be interested in applying all aspects of a generic model for a given use case. Instead,
modules directly relevant for the research question will be activated and others switched off, for
instance by including a specific set of policies or an alternative objective function. Analysing policy
effects on a potential farm exit might require a long-time horizon and the activation of modules
relating to on- versus off-farm labour, equity use, and farm succession aspects. In contrast, for such
an application, a monthly time scale related to detailed dis-aggregation of field operations might be
switched off, but might be required to assess agri-environmental measures. Such flexibility in model
set-up keeps each instance of the model at manageable size and facilitates the parameterization from
a case-study specific database.

Software engineering embraced modularization from the beginning and continues to conduct
extensive research in this field (van der Hoek and Lopez, 2011). Quite early Parnas (1972) established
the fundamental principle of reducing the information that a module opens for access, termed
“information hiding”. The related principle of “low coupling and high cohesion” by Stevens, Myers,

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

8

and Constantine (1974) advocate for low dependence between modules (coupling) and strong
dependence between elements inside a module (cohesion). “Separation of concerns” as a further
principle decomposes a computer program such that each module addresses different aspects of the
problem at hand (Dijkstra, 1982). Similarly, Lieberherr and Holland (1989) propose the “Law of
Demeter”, as a special case of loose coupling, which emphasizes that modules should be separated
from each other as much as possible. In the context of BEMFs, these principles lead to the following
general advantages:

• Transparency: the model can be reviewed module by module, facilitating overall
comprehension and quality control.

• Maintainability: Code and data base updates of a module do not affect others.
• Extensibility: Modules can be extended or added to the core model without affecting other.
• Distributed development: Modellers focus on specific modules which eases coordination of

coding efforts.

While desirable, achieving modularization for an IDM is challenging. Cross cutting aspects/concerns
limit the extent of low coupling, for instance, most modules calculating indicators need information
on all crop and animal activities. Conceptually, there is an unlimited set of possible modularizations.
For instance, the yellow hexagons in Figure 2 (or sub-divisions thereof) could be grouped into a large
number of functional units, depending on pragmatic and conceptual considerations. Different
viewpoints might suggest different organizations into modules, such as which data sources feed into
which equations, domain knowledge of coders responsible for specific aspects, or the need to reflect
regional detail in the equation structure, for instance related to policy implementation. Deciding on
the number of modules and their delineation is hence a core design challenge.

A recent study by (Britz et al., 2021) provides an overview on the modular structure of four applied
IDMs, which show different degrees of modularization. Modules for “database generation” and
“model statement” are distinguished in all models, see Figure 2, to separate code and data. The
database generation is usually only performed once for each case-study as this involves time
consuming data work and possibly fairly complex statistical methods. A complete separation of code
and data is still not fully implemented in any of the reviewed models, as numbers or references to
specific list elements might still appear in equations, such as “y = 3*x” instead of “a = 3” and “y = a*x”,
or “x[“wheat”] = y” instead of “a = [“wheat”]” and “x[a] = y”. This is less the result of a design decision
but often rather due to time shortage in project-based development, where ad-hoc changes of the
model code were implemented and not revised at later stages, so that such blocks of code persist. Still,
such observations are the exception rather than the rule, and the models follow in general the
principle to separate code from data. The possibility to parameterize a template model flexibly for
new use cases, as long as the database fulfils certain minimum requirements, is a critical feature for a
generic IDM. However, this also implies that the same equations and variables will be used for all use
cases, at least at the level of the core model. While this may not be problematic in some instances
(accounting identities, bio-physical relations), the representation of policies or the calculation of
environmental indicators may require further adjustments of the model code, and are hence better
placed within modules.

Such a modularization of equation blocks that are used in the model statement is particularly
observable in FarmDyn, which is structured along functional units of code which can be arranged
rather flexibly into a customized MP model for each farm instance. At the top-level, farm branches
can be selected to add related blocks of equations to the core model. For instance, adding the dairy
farming branch will integrate blocks of equations that govern herd composition, feeding requirements,
and manure management. These modular blocks themselves can be replaced by alternative
implementations as long as the input-output relations defining their interfaces with core model and
related modules are maintained. The main challenge in this replacement of alternative
implementations is the interpretation of the input/output in relation to the interpretation of these

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

9

inputs/outputs for other modules and the effect that has on (implicit) assumptions in the structure of
these modules. Swapping modules also implies that the context of the data-input and output is
consistent between them.

Exchangeable policy modules are also an important part of a generic IDM to reflect case study specific
implementation of measures. Policy modules can restrict the solution space and/or define subsidies
as part of the objective, potentially depending on farm management choice in case of opt-in measures.
This requires a generic approach to handle subsidies in the objective function. Policy modules might
introduce constraints which restrict environmental indicators such as a soil-nutrient-balance as
defined in the country- or region-specific regulations. These definitions of indicators might deviate to
what the scientific state-of-the-art suggests. Indicators derived from legislation should hence be coded
in the related policy module and kept separated from indicator modules that serve dominantly
reporting purposes. If indicators enter the objective function, a modular choice of indicators requires
a generic approach to handle varying lists of indicators.

The objective function can be regarded as a module itself. A purely profit-maximizing approach has
been observed by Janssen and van Ittersum (2007) and Reidsma et al. (2018) for the majority of the
reviewed models. Two of the four models we reviewed permit at least the inclusion of a farmer’s risk
preference, either by weighing the expected profit against its variance in a comparative-static setting
in IFM-CAP, or on demand in FarmDyn where different risk behavioural models can be used in a
stochastic-dynamic programming framework.

The observed models all comprise code for calibration against the observed farm data as an important
feature of a generic model. IFM-CAP, FSSIM and CAPRI-FT draw on Positive Mathematical
Programming (PMP) which requires at least a non-linear objective function. A larger body of literature
on PMP suggests two important observations. First, PMP requires some econometric evidence on how
input and output quantities react to changes in prices and, second, it can be applied also to models
with a quite limited set of constraints. Calibration of a modular system is challenging as a re-
configuration by adding or replacing modules will likely impact the allocative response of the model
or can even require a re-calibration. There are now also automated approaches to calibrate linear and
mixed integer programs (Britz, 2020) which are for instance applied in FarmDyn.

Modularization mainly aims at, first, easier adjustments to different use cases, such as covering
regional policies, and second, at model extensions, for instance, by integrating new indicators.
According to the principle of information hiding, a module is defined by its task, such as determining
feeding amounts at given herd sizes and component prices, but not by how the task is achieved or
coded in detail. Accordingly, the module’s definition includes the list of well specified inputs required
from other modules and core model, and the minimum set of well specified outputs to be generated
for others. This requires a clear and technically detailed documentation (symbol name, units,
dimensions etc.) of the variables supposed to be defined endogenously by a module and of all
variables exposed to other modules and the core model. According to the low coupling principle
(Stevens et al., 1974), modules should interact only through these defined interfaces. Thus, a module
should bundle as many functionalities pertaining to its task as possible (high cohesion). This includes
not only the equations that a module contributes to the overall model, but also its parameterization
and reporting.

Accordingly, a module of a generic IDM should be broken in three code blocks: (1) its data preparation
– to separate data from model code and avoid time consuming data preparation for each model run,
(2) its equations which feed into the overall MP model statement, and (3) its reporting part. Its
equations and related variables are at its core by providing the link to equations and variables of other
modules. The equations also mirror how the task is performed in detail and therefore constitute its
unique core. But a module might feature multiple implementations for data preparation to work with
differently structured databases, and for reporting, for example, to provide rough overviews or

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

10

detailed debugging reports, or to output different formats, such as spreadsheets or interactive web-
pages.

With regard to the required data, a distinction between native and contributed modules is useful here
(Figure 3 Modular Setup). By definition, a native module (the hexagons labelled: “Module” in Figure
3) can be always fully parameterized from the general model database, while a contributed equation
module offering additional functionalities (the purple block of hexagons in Figure 3) might require
additional data which it must provide by own code for data preparation. The same holds for the
reporting step.

Ideally, the general model database could serve any case-study using native modules only. Yet, EU
wide data bases such as FADN cannot provide the farm management detail required for a
technologically rich generic IDM. As a compromise, contributed modules should provide sensible
default values in case the required information cannot be obtained from the data-processing steps
(the purple database symbol labelled: “0” in Figure 3 Modular Setup

). A case-study application can then code its own data driver to use a specific data base which replaces
default values.

Figure 3 Modular Setup

In summary, the most crucial aspects for design and integration of modules in such a setting are the
clear definition of obligatory inputs and outputs (interfaces) and ensuring that the equations in the
module can be executed by providing default values for all parameters. This also implies that the
technical documentation of core model and modules, and the development of protocols for
contributor should receive particular attention from the very beginning if model development and
maintenance is to be distributed across multiple teams with high staff turnover rates.

This already underlines that modularity comes along with challenges for the computational
implementation. The example models above comprise ten- or hundred thousands of code lines of
which larger sections relate to data processing and reporting. The restricted language features of an
AML like GAMS, used for all four models reviewed, eases learning but challenge code development
and maintenance for such large-scale projects, especially if multiple developers are involved. In
particular cases where different variables and parameters are named similarly but referring to
different contents (namespace conflicts) are difficult to handle in programming languages that do not

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

11

allow for the distinction of namespaces. This requires additional synchronization efforts, for instance
by establishing coding protocols within the user community and by emphasizing the need for good
code documentation. In addition, there should also be a documentation which modules cannot be
combined, e.g. in the form of an exclusion/inclusion matrix.

Modularity also needs to reflect user-model interaction. Three models reviewed in detail (CAPRI-FT,
IFM-CAP, FarmDyn) feature a GUI, all realized in GGIG, to facilitate, for instance, choosing the included
modules or the data base to use. An important question is to which extent a specific model
configuration (farm branches, activities covered, specific policy implementation etc.) is driven by the
data base or defined by user interactions. Second, to what extent should the user be able to provide
(or overwrite) via the GUI data otherwise read from the model data-base, such as, e.g. run specific
prices, yields or values of policy measures. Third, should the GUI also cover such functionalities for
contributed modules? If yes, how is this technically achieved and institutionally organized? And finally,
which alternative ways does a user have to interact with the model itself?

3. MODULAR ALIGNMENT OF TASKS IN WP3
3.1. Overarching model structure: Core model and modules

Several reviews of IDMs (Britz et al., 2021; Janssen and van Ittersum, 2007; Reidsma et al., 2018) found
that the majority of applied IDMs are essentially mathematical programming models (MP) at farm
level. In general, such models optimize an objective function of decision variables, subject to
constraints, where both, objective function and constraints can be linear or non-linear. In particular
models to investigate investment decisions regarding farm machinery or buildings may require that
some decision variables can only have integer values, in which case the models become “mixed-
integer programming models” (MIP). The optimization of the farm plan is then done using numerical
algorithms, or solvers. The choice for one particular model type and the appropriate solver has
implications for the flexibility of the model regarding the integration of additional model features. For
instance, a typical solver for MIPs may not be capable of solving a model with non-linear constraints
or objective functions.

Two IDMs currently available within the MIND-STEP consortium, which were also reviewed by (Britz
et al., 2021), are IFM-CAP and FarmDyn. IFM-CAP features a quadratic objective function and linear
constraints, whereas FarmDyn is completely linear, but includes integer variables. The decision to
choose core functionalities of either FarmDyn or IFM-CAP as the core model for the overarching
structure – or a hybrid version of both – has a range of implications for the interactions with the other
research activities within work package 3 and between work packages 3, 4, and 5.

Within WP3, the overall set-up is that task 3.2 aims at defining a core model and structures for
exchange of information with the other tasks. Tasks 3.3, 3.4. and 3.5. will then be linked to the core
model and either contribute to it by providing modules with additional functionality, or by making use
of the core model, e.g. by building on simulation results. Figure 4 summarizes the intended
interactions within WP3. Task 3.3. will investigate behavioural aspects of GHG mitigation strategies at
farm-level, and thus improve the representation of farmer’s behaviour in the core model.
Subsequently, the improved core model will be used within Task 3.3 to derive strategies for farm-level
decisions to mitigate GHG emissions under a range of policy options. Task 3.4. will add improved
representation of crop-management options, and therefore enrich the representation of farming
technologies. Finally, Task 3.5. investigates risk-management behaviour and risk-management
instruments for farmers. While the former refers to an improvement of the objective function, the
latter increases the number of decision variables by adding the usage of RMIs.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

12

Colours: Blue: Core model

Purple: Informs the core model or adds functionality

Green: Uses results from the simulation model

Figure 4 Modular interactions between tasks in WP3

Figure 4 depicts the interactions between the different tasks within WP3, structured around the
concept of core model and modules. The technical implementation of these interactions critically
depends on the formal aspects of the core model.

3.2. Features of the core model
MIND STEP will develop an overarching model structure for IDM farming units. Key functionalities will
be implemented, which are common to any farm type and instance of the system analysed, including
for example endogenous adjustment of yield, selected variable inputs, land and labour use,
investment and farm viability. Starting point of this Task are IDM models available inside the MIND
STEP consortium e.g. IFM-CAP, FES and FarmDyn. Other IDM models outside the consortium are
considered as well. The functionality of the models is reviewed and existing modules are re-used as
far as possible. We will contact other consortia financed under the topic to circumvent possible double
work and to share ideas and approaches with them. The implementation of the key functionalities will
follow the protocol and specifications for models as defined in Task 3.1. Output of this Task is an
overarching IDM model that fits to the purposes of MIND STEP as the basic structure where additional
models (to be developed in WP3 and WP4) can be added to extend the MIND STEP functionality in a
consistent and modular way.

While the structure of the core model is not yet (April 2021) fully determined, it has become clear
from previous surveys and the review by (Britz et al., 2021) that it will take the form of an MP model,
as this provides the widest range of possible application areas. In the simplest case of a linear MP
model, the general structure will be as depicted in Figure 5: The farmer’s decision variables or activity
levels are represented here by an n*1 vector named x. This includes all production activities for crops
and animals, but also buying and selling of inputs and products. Furthermore, lease of additional
farmland, purchase of crop insurances, off-farm labour, and so on, can be included in x. Associated
with this is an n*1 vector of cost and prices named c. Each production activity requires some resources
like land or labour, selling products requires that they have been produced in the first place, and so
on. The relations between the demand of n activity levels for k resources is summarized in the

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

13

coefficient matrix A of size k*n. Finally, the farm is supposed to be endowed with k resources,
represented by a 1*k vector r. Formally, the problem is to maximize the scalar product of c and x, such
that the resource requirements do not exceed the farm’s endowments, and such that activity levels
are larger or equal to zero (see also Hazell and Norton, 1986).

Figure 5 Typical Linear Programming Model

For pragmatic reasons, it is conceivable that the envisaged core model will consist of a minimalistic
set of crop and animal production activities, as well as minimalistic set of constraints. Increasing the
model’s analytical capabilities will then take place by adding specific modules.

The extension of the core model by adding modules may take several forms. A typical case is extending
the number of activities, for instance by accounting for different intensity levels in crop production. In
this case, crops could be produced with higher or lower amounts of fertilizer and instead of one activity
for each crop, the model would include now several (e.g. wheat with low fertilization, wheat with high
fertilization). This increase in the number of decision variables is depicted by the lighter-shaded areas
in Figure 6. As a consequence, also the other parts of the model need to be expanded: output prices
may be the same in this case, but production cost in the vector c will change, and also the yields per
hectare, which have an impact on the farm’s potential to sell products. It is also conceivable that the
number of constraints is extended, e.g. by adding new crop operations like minimum tillage, such that
new machinery is required. A third possibility to enrich the core model is by including new terms to
the objective function (vector d in Figure 6), which capture e.g. the yield variance of alternative
cropping activities and the farmer’s attitude towards the implied risks. These considerations imply
that the development of modules must take place in awareness of the core model and its
requirements. Furthermore, it is advisable to also provide a clear delineation of what the core model
is not going to accommodate (e.g., non-linear constraints).

Prices/cost Model statement

c' crops animals other max
Levels s.t.

x' crops animals other

Coefficients Ax r
A

other

Ax≤r
c'x

x≥0

Constraints

≤
resou
rces

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

14

Figure 6 Modular extended core model

3.3. GHG mitigation options and farmers‘ choices
The aim of Task 3.3 in WP3 is to illustrate the extendibility of the MIND STEP model structure by adding
a model to analyse mitigation strategies to climate change. For broad applications of the model to
different regions and sectors, this requires geo-referenced farms linked to financial-economic and
biophysical datasets. Because of data intensity the model will be first applied to regions in Germany
and the Netherlands focussing on methane and nitrous oxide emissions on livestock and arable farms.
The modelling starts from the technology rich IDM model FarmDyn. Based on the stage model of self-
regulated behavioural change (Figure 7), MIND STEP designs and implements experimental
procedures to measure farmers’ socio-psychological factors, adoption intentions and stage
membership in taking up mitigation measures, to more realistically model behaviour regarding
adoption of new technologies and production and environmental impact of policies. Besides
traditional agricultural statistics also big data will be considered (FADN, FLINT, individual census data,
IACS, plot data, satellite data and bio-physical data will be processed and linked). Field interviews with
a selected sample of Dutch dairy farms will be conducted to generate insights in farmers’ willingness
to participate in GHG reducing measures. Survey and spatial data provide detailed information on the
individual farmers and agro-ecological conditions in local environments. Combining behavioural and
biophysical characteristics feeds into the calibration and econometric parametrisation of the model
to be developed in this Task 3.3. In practice, this implies that the existing FarmDyn model will be
augmented by non-economic factors.

Prices/cost Model statement

c' crops animals other max
Preferences

d' crops animals other s.t.
Levels x≥0

x' crops animals other

Coefficients Ax r
A

other

new activities, old
constraints

old activities
new constraints

new activities
new constraints

c'x
+d'x

Ax≤r

≤

resou
rces

Constraints

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

15

Figure 7 Self-regulated model of behavioural change (adapted from Bamberg, 2013)

Figure 8 depicts the interactions between statistical data, survey-based behavioural information, and
the FarmDyn model. A data envelopment model for circular dairy farming will be developed and it will
provide empirical support for the FarmDyn model. Using the dual approach, Data Envelopment
Analysis (DEA) allows us to compute the shadow price of GHG emissions, that is, the farmers’
willingness to pay to give up one unit of GHG emission. This will be used to calibrate d’ in Figure 6 and
thus feeds into the objective function in Figure 8 . Additionally, farmers’ revealed preferences for
engaging in GHG reducing activities will be included in the objective function (Figure 6 and Figure 8).

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

16

Figure 8 Three pathways to improve the FarmDyn model

A ‘double hurdle approach’ that combines results from survey and FarmDyn model will be
implemented to model the adoption behaviour more realistically. The first hurdle comes from the
predicted stage membership based on the self-regulated stage model. Stage membership is estimated
by socio-psychological factors in the stage model (Figure 9). Only when the predicted membership is
at actional stage, the second hurdle will be encountered which is the NPV based core FarmDyn model
(Figure 9). In this way, it will likely provide a richer adoption prediction, as this ‘double hurdle approach’
includes not only the social-psychological factors reflected in self-regulated stage model, but also the
economic factors (NPV) in FarmDyn model. Another important additional feature provided by this task
is the identification of farmer intention to participate in GHG reduction. This will in effect restrict the
number of additional management option. available in the farm model.

Figure 9 Double hurdle approach

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

17

3.4. Crop management choices
The main aim of the micro-econometric analyses conducted in Task 3.4 is to make the most of the
information content of FADN datasets, possibly completed with soil and weather data, for feeding MP
farm models. Tools developed in this task are designed to process FADN datasets for delivering (a)
parameters to be directly used in MP farm models (e.g., farm specific chemical input uses estimated
at the crop level) and (b) items to be used for calibrating parameters of MP farm models (e.g., farm
specific crop acreage elasticities). The possible extensions of the core model (Figure 5) are illustrated
in Figure 10: Farm-specific crop management options or intensity levels can be derived from
observations to expand the number of cropping activities available to the MP. This leads in particular
to a larger matrix of technical coefficients (A) and more refined information about the cost (c)
associated with these new production activities. These changes are depicted by the lighter shaded
areas in Figure 10. The mentioned crop acreage elasticities can be, for instance, be used by calibration
techniques that involve adding a quadratic cost-term to the objective function (Q), where the diagonal
elements of Q are typically derived from the response elasticities. Such an approach requires that the
objective function itself is also a module that can be swapped if necessary (Figure 3).

The following sections provide an overview on the methodological approaches and some preliminary
results from these research activities.

Figure 10 Extensions of the core model by using results from micro-econometric analyses

Prices/cost Model statement

c' Wheat [1]...[n] animals other max
+x'Qx

Levels s.t.
x' Wheat [1]...[n] animals other x≥0

Coefficients Ax r
A

other

Quadratic cost terms x
Q

Constraints

Intensity-specific
output and input

coefficients

Intensity-specific
constraints

W
heat

[1]...[n]

c'x

Ax≤r

≤
resou
rces

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

18

3.4.1. Random parameter micro-econometric multi-crop models, and
farm specific crop acreage elasticities

The micro-econometric multi-crop models and estimation approaches considered in Task 3.4 are
designed for two purposes: for being used as simple simulation models or for providing behavioral
parameters for building other – more complex – simulation models (e.g., IFM-CAP, GLOBIOM,
MAGNET) as investigated in WP5. These micro-econometric modelling and estimation tools build on
those previously proposed and developed by members of the MIND STEP consortium. As such, these
estimation models are data preparation modules within the overarching IDM structure rather than
run-time modules that form part of the model equations.

The considered micro-econometric multi-crop models are characterized by three main features. First,
they rely on simple (yet theoretically consistent) functional forms of yield supply, input demand and
crop acreage choice models, which make them empirically tractable (Carpentier and Letort 2012,
2014). Regarding acreage choices their basic structure is similar that of PMP models (e.g., Heckelei et
al 2014, Mérel and Howitt 2014, Britz and Arata 2019) and of a few multi-crop econometric models
(e.g., Chavas and Holt 1990, Heckelei and Wolff 2003). Second, these models feature farm specific
random parameters, which make them especially relevant for capturing the effects of unobserved
heterogeneous factors on farmers’ production choices. The main purpose of the estimation of these
models is to estimate the probability distribution of the random parameters in the population from
which the sample is drawn. Third, these models explicitly account for crop production choices, and
thus for null acreage choices, in a way that is fully consistent from a micro-economic viewpoint
(Koutchadé et al 2020). These models can be estimated based on panel datasets reporting cost
accounting data (Koutchadé et al 2018, 2020) as well as on standard accountancy panel datasets, such
as typical FADN datasets (Carpentier et al 2014).

Once estimated, these random parameter micro-econometric multi-crop models enable the
calibration of technical and behavioral parameters at the farm level based on a well-defined statistical
background. For instance, farm specific crop acreage elasticities with respect to netput prices or crop
returns can easily be derived from the estimated models (Carpentier et al 2014, Koutchadé et al 2018,
2020). Such elasticities can then be employed for calibrating farm specific parameters for MP farm
models, including parameters involved in the PMP term of quadratic MP models or parameters
involved in the constraint set of LP models (e.g., parameters A and/or r inFigure 10).

Two avenues are pursued for making these models and their estimation approaches better suited to
the toolbox of the community developing MP farm models. First, the considered micro-econometric
multi-crop models for accounting for livestock production are extended. Second, estimating these
models yield rich results but entails significant practical issues. These models are high-dimensional,
feature random parameters and, in the case of the model of Koutchadé et al (2020), also feature
endogenous switching regimes. Their estimation rely on specifically designed SAEM algorithms, which
are extensions of standard EM algorithms featuring stochastic approximation and integration with
simulation methods (Delyon et al 1999, Lavielle 2014). The approach used here consists of simplifying
the specifications of these model (e.g., by imposing restriction on their random parameters, by
approximating some of their components) for significantly alleviating their estimation costs. The
objective is to devise algorithms that are relatively easy to code and to provide suitable ranges for
their tuning parameters (e.g., simulation draw numbers and their evolution along the course of the
algorithm).

3.4.2. Allocating chemical input uses to crops
Disaggregating variable input uses, which are reported at the farm level in FADN data, by allocating
them to the crops of the considered farms can also alleviate the estimation burden of the micro-
econometric multi-crop models considered above. Yet, disaggregating variable input uses for

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

19

obtaining estimated cost accounting data is also useful for obtaining input data for MP farm models
(e.g., crop production costs appear in parameter c inFigure 10).

Frequentist (e.g., Dixon et al 1992, Carpentier and Letort 2012), Bayesian (e.g., Gocht 2008, Louhichi
et al 2012) or entropy based (e.g., Léon et al 1999, Gocht 2008, Louhichi et al 2012) approaches were
proposed for allocating input uses observed at the farm level to the farm activities. A major drawback
of the approaches considered so far consists of their relying on crop input use models that fail to
account for unobserved heterogeneity across farms. Typically, these approaches assume that crop
input uses only depend on a few observed variables (e.g., farm size, yield levels, regional effects), the
information content of which is often limited. This information content is not sufficient for capturing
the important heterogeneity in farm crop input uses. This heterogeneity is systemically displayed by
cost accounting data, even in small areas (e.g., Carpentier and Letort 2012, Koutchadé et al 2018).

This is addressed by extending previous approaches (i) by considering farm specific random parameter
models for crop input use levels and (ii) by enforcing (stochastic) constraints on the estimated crop
input uses at the farm level during the estimation process (Koutchadé et al 2021). Farm specific
random parameters allow to account for unobserved heterogeneity in crop input use across farms
and, as a result, permit to deliver crop farm specific crop input use estimates based on a well-defined
statistical background. Enforcing (stochastic) constraints on the crop input uses estimated for each
sampled farm enables to incorporate prior information in the estimation process in the form of (soft)
boundary constraints. The considered input allocation equations can be estimated based on a mixed
Bayesian-frequentist statistical framework (e.g., Meza et al 2007) under stochastic constraints (e.g.,
Wu et al 2019).

Promising results could be obtained with a “test” dataset that consists of an unbalanced panel dataset
containing cost accounting data of a sample of 951 arable crop producers in Champagne region
(NUTS2) from 1998 to 2014 (Koutchadé et al 2021). The estimated input allocation equations for
pesticides and fertilizers account for the 11 crops that cover more that 90% of the considered farm
acreages. Two types of constraints on estimated crop input uses are considered: (i) Standard non-
negativity constraints are usually imposed on input uses. (ii) Constraints stating that the estimated
crop input uses need to lie (in a probabilistic sense) between half (soft minimum bound) and twice
(soft maximum bound) of the average crop input use observed in the data are imposed. The latter
constraints allow to incorporate expert knowledge information or mean results of surveys on farmers’
practices in the estimation process.

Figure 11 to Figure 13 display the results for three selected crops – wheat, rapeseed and potato –
under the standard non-negativity constraints. Input uses are measured per ha in 100€ at the 2005
prices. These figures plot the estimated per hectare input use levels against their “true” (observed)
counterparts. Figure 11demonstrates that reasonably good results could be obtained when estimating
fertilizer and pesticide input uses for winter wheat, which is produced by all sampled farmers and
represents on average 35% of their arable crop acreage. Admittedly, our estimated input use levels
significantly differ from their true counterparts. Yet, most estimates lie within reasonable ranges
around their true counterparts. For instance the average difference between the true and estimated
(in absolute value, AAD) fertilizer use equals .37 while the average fertilizer use equals about 2 (i.e.,
about 200€/ha at the 2005 fertilizer prices). Yet, fertilizer uses are underestimated. Rapeseed is
produced by 96% of the sampled farms but its average acreage share doesn’t exceed 15%. Figure
12shows that the estimated fertilizer and pesticide uses for rapeseed are less accurate than those for
wheat, and that pesticide uses for rapeseed are overestimated. Figure 13shows that the estimation
approach fits poorly the chemical input uses for potato production, which only concerns 11% of the
sampled farms (for an average crop acreage shares of 2%).

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

20

Figure 11 Estimated versus observed fertilizer (left) and pesticide (right) uses for wheat (Marne

dataset, 100€/ha, at 2005 price levels)

Figure 12 Estimated versus observed fertilizer (left) and pesticide (right) uses for rapeseed (Marne

dataset, 100€/ha, at 2005 price levels)

Figure 13 Estimated versus observed fertilizer (left) and pesticide (right) uses for potato (Marne

dataset, 100€/ha, at 2005 price levels)

These results show that (i) recovering pesticide uses is generally more difficult than recovering
fertilizer uses, (ii) estimation accuracy increases with the average acreage share of the considered crop

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

21

and (iii) average estimated input uses are close to their true counterparts, in general. As a matter of
fact, these results are promising.

The effects of various constraints are currently under investigation. The final objective is (i) to
characterize the models and constraint sets yielding the most accurate results and (ii) to devise
estimation algorithms that are relatively easy to code (and to provide suitable ranges for their tuning
parameters).

3.4.3. Uncovering adoption and characteristics of crop management
practices

Accounting for adjustments in yield and variable input use levels is often difficult in MP farm models,
mostly due to data constraints. The AROPAj model makes use of response functions of crop yields to
nitrogen uses. These response functions are estimated based on (place specific) simulations obtained
from the agronomic crop growth model STICS. Whereas AROPAj considers continuous adjustments in
nitrogen uses, most other MP farm models consider discrete changes based on menus of crop
production practices differing by their nitrogen use levels. Each pair composed of a crop and a practice
is then considered as a specific activity in the considered MP farm models (seethe lighter shaded areas
in Figure 10). GLOBIOM makes use of simulations obtained from the agronomic crop growth model
EPIC for defining (place specific) “low-intensity” and “high-intensity” yield and nitrogen use levels.
FarmDyn considers more comprehensive menus of production practices differing by their nitrogen use
intensity levels (as well as by their tillage practices). The parameters of these menus are determined
based on available agronomic data (see Figure 10).

Crop production technologies such as the ones considered in MP farm models are related to the
concept of crop management practice (CMP) that is used by agronomists. Agronomists define crop
management practices (CMPs) as sequences of operations and of input quantities used for producing
crops. CMPs can be characterized by their relying on specific techniques (e.g., reduced tillage) or by
their target yield levels (e.g., “high-yielding” CMPs are designed to achieve higher yield levels than
“low-input” CMPs. “Low-input” refers here to chemical inputs, that is to say mineral fertilizers and
chemical pesticides).

While considering varying levels of fertilizer uses (as well as of water uses) is possible thanks to
available benchmark agronomic data or available agronomic crop growth models, considering varying
levels of pesticide uses is much more difficult. Pesticide saving CMPs are poorly documented in the
literature. This probably explains why agronomic crop growth models don’t consider crop protection
in general, and pesticide use in particular. This leaves two options for adjusting pesticide uses in MP
farm models. First, one can construct hypothetical CMPs, and the corresponding input use and yield
levels, by combining data describing chemical input use and yield levels in conventional versus organic
production practices. Data describing current farmers’ production choices mostly describe, by
definition, the technical and economic performances of conventional practices. Organic production
practices are well documented, especially because promoting organic production has been on the
agenda of the EU (and of many member states) for a long time. Second, one can also try to uncover
the adoption rate and the characteristics of CMPs of varying intensity levels from data describing
farmers’ production choices.

Devilliers et al (2021) obtained preliminary results by pursuing the second option. These results tend
to show that trying to recover the adoption rates and the characteristics of CMPs of varying chemical
input use intensity from observational data is difficult and unlikely to be very useful for the purposes
of the MIND STEP project. First, identifying characteristics and adoption patterns of latent CMPs is
challenging. This requires cost accounting data that are rarely available. This also requires significant
modelling and estimation efforts. Second, the obtained results tend to show that most farmers stick
to conventional CMPs, that is to say to CMPs that are high yielding and intensive in chemical input

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

22

uses. These results are striking since the considered empirical application concerns an area where LI-
CMPs were tested by scientists with the support of local farm organizations and of local downstream
firms. While this hypothesis needs much more empirical support to be confirmed, these results
strongly suggest that the best option to determine the characteristics of chemical input saving CMPs
is to rely on data provided by agronomists and to process them for obtaining relevant input data for
MP farm models.

3.5. Risk management models
The aim of Task 3.5 is to improve the capacity to model CAP risk management policies by developing
an IDM model which captures the acceptance and risk-reducing impacts of different risk management
instruments (RMI). The empirical application will focus on weather risk in crop farms. The analysis will
be based on a large data set combining new survey data with existing data from detailed regional
FADN and biophysical data (weather, soils, yields) according to the procedures developed in WP2. The
survey will explore risk preferences and attitudes to use RMI of farmers in Germany and Italy. The
output of this Task is a module to analyse the acceptance and risk-reducing impacts of different RMI.
The module allows to analyse the propensity to adopt RMI for a range of behavioural theories and
farm and farmers characteristics (e.g. household; off-farm income; wealth; personal traits), and to
analyse the impact of RMI that reduce income volatility .

Incorporating RMIs into the framework of a MP model hinges on two types of conceptual decisions:
First, how should the riskiness of a farm plan, and the farmer’s attitude towards it, be represented in
the objective function and second, what are the mechanisms through which the respective RMI
contributes to the overall reduction of risk in the model. Concerning the former, mean-variance
approaches are a typical way to incorporate the variability of farm outcomes and the farmer’s
preferences for lower or higher levels of this variance. A classical approach (Hazell and Norton, 1986)
is to represent the mean farm outcome by a linear term in the objective function and the outcome
variance by a quadratic term, weighted by the farmer’s constant absolute risk aversion. Such a
quadratic objective function results in a non-linear programming model, which may limit the choice
of reliable numerical optimization algorithms. However, IFM-CAP and FarmDyn, the two currently
operational MP models in the MIND STEP project can accommodate quadratic objective functions.
The estimation of risk preferences within quadratic objective functions has been addressed by Arata
et al. (2017). Figure 14 gives an example of such an MP model. The relation between levels of decision
variables and the overall variance of farm outcomes is represented here by the covariance matrix V,
weighted by the absolute risk aversion parameter α. Usually, not all variances and covariances
between farming decisions can be measured, which is the reason for V to be partially empty. This
requires ensuring that the core model can accommodate empty slots in the risk module, either by
omitting the affected equation or by requiring the module to provide default values. Also, the source
of risk is not specified in this diagram, it can be risk resulting from environmental conditions affection
physical crop yields or risk from fluctuations of input and output prices on markets. The risk aversion
parameter can be parameterized based on the survey results in 3.5 to depend on farm and/or farmers’
characteristics.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

23

Figure 14 Mean-Variance model with crop insurance as risk management instrument

While a quadratic representation of risk preferences in the objective function of the targeted IDM is
generally fine regarding the numerical optimization, it should be emphasized that other equations in
such an MP model should remain linear.

The adoption as well as the impact of RMI can be modelled endogenously in a mean-variance-
framework by including the impact of the RMI on the mean return and variability of the respective
activities. This requires a specification of the variance-covariance-matrix with RMI, e.g. based on past
observations and the calculated impact of the RMI on single-activity returns (e.g., Hazell et al., 1986).
However, “a growing body of evidence suggests that deviations from expected utility are quite
common in agricultural technology adoption decisions, and agricultural adoption behaviour might be
better explained by models incorporating this insight” (Streletskaya et al., 2020). While some
alternative risk formulations or measures (e.g. mean absolute deviation) could be accounted for by
respective alternative specifications of the objective function (and/or additional constraints),
alternative behavioural theories may require a two-step modelling (e.g., the optimization of the
objective function of cumulative prospect theory generally poses severe computational challenges
when allowing for multiple risky activities). The first stage will cover the modelling the adoption of
RMI, e.g. based on heuristics and/or cumulative prospect theory in a narrowly framed decision
problem (see e.g. Babcock, 2015, for an application to insurance coverage), and the second step

Prices/cost Model statement

c' crops animals other max
+αx'Vx

Levels s.t.
x' crops animals other x≥0

Coefficients Ax r
A

other

Covariances x α(z)*
V crops CARA

other

*Risk aversion coefficient depending on vector z of farm/farmer's characteristics

≤
resou
rces

Constraints

anim
als

crops
insur
ed

crops- insured

crops- insured

c'x

Ax≤r

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

24

modelling the impact on farm activity levels and income volatility given the chosen RMI using the
extended model system. Similar to the risk aversion coefficient, parameters of the alternative
adoption decision functions (e.g. probability weighting, loss aversion) can be specified to depend on
farm/farmer’s characteristics, and default values will be provided from the case studies in Italy and
Germany. FADN input to the module includes farm (group) specific information on the variance of
activity-specific yields and prices to specify the variance-covariance matrices, and farm/farmer’s
characteristics (e.g. farm size, farmer’s age) which may influence risk behaviour.

4. THE IMPACT OF MODULARITY ON INTERACTIONS
WITH WP4 AND WP5

The modular structure developed in WP3 enables two possible pathways in the interaction between
models/modules developed in WP3 and established models working at landscape scale and beyond
in WP4 and WP5. First, simulation results can be provided by the overarching model under different
configurations as described in section 3.1. Second, each econometric model developed in the tasks
3.3-3.5 is able to provide by itself parameters to improve not only models in WP3, but also in WP4 and
WP5. Regardless of the pathway, these data exchanges require clearly defined interface definitions,
including protocols for potential aggregation and upscaling. The resulting interfaces process the
parameters and simulation results from WP3 to allow their integration into the upstream models. Data
processing by an interface can firstly encompass alignment of units and definitions, aggregation, for
instance across IDMs, production activities or products, in order to match the resolution and extent
of different scales such as space, time, products, activities, agents etc. of the large-scale model.
Secondly, it can use more sophisticated micro-econometric or machine learning approaches to derive
behavioural functions to integrate in the WP4 or WP5 models. The development of the specific
interfaces and their implementation is foreseen in task 4.1 and 5.1, whereas this section as part of
task 3.1 lays down the general requirements for model connections and develops guidelines for
interface development. Figure 15 5 illustrates a complete list of connections between the models in
the different WPs, with their corresponding interface levels. Each interface refers either to the use of
simulation results from the IDM models or to the parameterization of large-scale models based on
econometrics models.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

25

Figure 15: Connection of MIND STEP IDM models WP4 and WP5 models as defined in the Grant

Agreement

4.1. General guidelines for both overarching and econometric model
connections to WP4 and WP5

The interface of IDM models in WP3 and WP4/WP5 all differ in their capability to reflect different
details with respect to space, agents such as farmers differentiated by farm type and size, time and
dynamics, and policy specifications. In order to harmonise the IDM in WP3 and WP4/WP5 models, this
section develops general requirements and guidelines for all interfaces which are going to be
developed in the course of the MIND STEP project.

Regional and farm type specification: The IDM models in WP3 need to be parameterized and set-up
in order to reflect farm types, farm sizes, management options, technology, available crops and policy
and market conditions for a specific region; factors which all vary substantially across the EU member
states and regions within, reflecting the highly heterogenous EU farming structure. The upstream
WP4/5 model receiving simulation results or parameters therefore has to define the regional focus
for the application of the WP3 IDM models. This focus can stretch from a small region within one
Member State to multiple Member States. Regardless of the spatial scope, the upstream model has
either to indicate that a representative full population of farms has to be simulated or provide
information on relevant farm types, farm sizes etc. to cover in simulations. To harmonize the regional
nomenclature of both models, the regional specifications of the interface should be given in NUTS
regions. Equally, farm typologies (specialization, size etc.) should follow the typology for agricultural
holdings as used in the FADN database.

Time and dynamic specification: The interface have to define for which years (ex-post or ex-ante) the
simulation results or parameters are to be provided for. Simulation runs in IDM models are often done
with yearly steps, either recursive or fully dynamic. In contrast, the WP5 market scale models rather
run in comparative-static mode and depict a new equilibrium over a typically medium time horizon,
such as ten years. Resulting from this, the interface has to specify the time horizon and the yearly
intervals relevant for the IDM model.

Policy and market environment specification: Policy measures within the CAP and other EU legislation
such as the Nitrate and Water framework directive increasingly relate to specific single farm attributes.
The overarching model needs to be able to capture Member state and potentially region-specific
implementations of key policy measures in detail. A potential list of measures and related scenarios is

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

26

provided by task 1.1 WP4 and WP5 models, operating at landscape scale and beyond, abstract with
varying degree from the farm specific implementation of policy measures. This can relate to using
average farm attributes while still depicting the policy measure in some detail. An example provides
the implementation of Ecological Focus Area conditions within CAPRI-FT. Market scale models might
instead summarize the impact of policy instead by some ad-valorem subsidy or tax rate as typically
found in Computable General Equilibrium models, potentially combined with some parameter
adjustments to reflect, for instance, reduce price responsiveness due to restrictions. The interface
definitions need hence to specify which policy measures to cover and which parameters at which
resolution are used/adjusted in the upstream model to depict them.

A challenge provides price endogeneity in market models. This precludes simply superimposing future
growth rates of prices in IDM models which are endogenous in the WP4/WP5 target model. This might
require some looped structure to update prices in IDM and parameters in market scale model
recursively, depending on the application. Independent of this, changes in all prices which are
exogenous to both the WP3 and WP4/WP5 model should be harmonized in in ex-ante analysis.

4.2. Requirements related to the interface of the overarching model and
models in WP4/ WP5

As discussed in section 3.1 the core IDM model is a BEFM model programmed as a mixed-integer
mathematical programming model, potentially with a strictly convex quadratic objective instead of a
linear one. The use of integer variables is necessary to consider for instance indivisibilities in farm
assets and if conditions in the implementation of policies. Performant algorithms for large-scale
modelling combining integers and non-linear constraints are still not available such that linear
constraints only are envisaged. Non-linear production functions etc. need therefore to be
approximated by a convex set of Leontief production activities. The interface definitions specify which
of the many simulations results from optimizing the IDM model are provided to the WP4/WP5 models.
This is likely a restricted set of key farm indicators.

Key indicators: The core model provides a list of key farm indicators regardless of the data receiving
large scale model. Such key indicators relate to the economic domain (revenues, variable and fixed
costs, subsidies received, and indicators derived thereof such as profits etc.), social domain (such as
labour use and distribution over time), environmental ones (GHG emissions, nitrogen and phosphate
balances etc.) and to material balances (product output and input use). Existing indicators are
extended by new indicators developed within the MIND STEP project task 1.2 and additional indicators
relevant for policies developed in task 1.1. Especially for economic indicators and material balances
information on the exact definition of production activities, inputs and outputs needs to be provided,
typically in form of concordance lists also stating the relevant units and definitions. Table 1 and 2
provide examples for indicators and netputs, respectively, and should be used as templates for the
concrete implementation of interface definition in task 4.1

Table 1: Examples of defining concordance list to develop interface definitions for economic
indicators

Economic
indicators

WP3 model WP5 model Required action for
interface

Revenues
relating to
output sales

Measured at farm gate
prices included VAT, local
currency

Market prices, EU Estimation of marketing
mark ups, exchange
rates where needed

Subsidies Linked to production
activities

Linked to output/input
use

Conversion with yields
for outputs

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

27

Economic
indicators

WP3 model WP5 model Required action for
interface

…. ….. …. ….

Table 2: Example of output matching tables

Output WP3 model WP5 model Required action for
interface

Oats Metric tons, output
including all losses up to
sale from farm gate

Other cereals, post-
harvest losses not
considered (separate
element in market
balance), in 1000 metric
tons

Aggregation, multiply
with (1+loss rate), unit
conversion

Rye “ “ “

…. ….. …. ….

In order to illustrate such a connection, figure 14 shows as an example of a more complex model
connection between the farm level model FarmDyn (task 3.2/3.3/4.5) and AgriPolis (task 4.3/4.5)
realized in the task 4.5.

Figure 16: Simplified illustration of the integration of FarmDyn as a neural network into AgriPolis

and the related requirements defined by the large-scale model.

The linkage between AgriPolis (WP4 Agent Based Model at landscape scale) and FarmDyn (WP3 bio-
economic farm-scale model) is realized through a neural network trained by data which is generated
with FarmDyn. The neural network is subsequently implemented into AgriPolis to replicate as best as
possible the simulation behaviour of FarmDyn. Specifically, the neural network shall replicate the
input-output relationships of different farm types with varying size classes, under different market
and policy environments and the initial available technology. The required parameters to consider in
FarmDyn are determined by the specific region to which AgriPolis is applied. This limits the list of
available crops, farm branches and technology etc. This type of model connection presents a more

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

28

complex linkage between the models where the interface itself is a sophisticated model (here a neural
network). Defining such an interface requires close interactions between experienced users of the
down- and upstream model. Other interfaces, such as to the stand-alone models in WP3, might be
easier to achieve as presented in the following.

4.3. Requirements related to the interface of the econometric model and
models in WP4/ WP5

The IDM models developed in task 3.4 and 3.5 are a micro-econometric multi-crop choice model and
a micro-econometric risk model, respectively. These models can be used in stand-alone mode to
provide specific insights on crop choices and risk or can be used to parameterize WP3 to WP5 models.
Generally, these econometric models have to follow the general guidelines defined in section 4.1,
however, the level of detail might differ substantially to the overarching model with respect to policies,
for example. The direct upscaling from the econometric model to a WP5 model bypasses the
application of the single-farm model such that information relating to simulation results such as key
farm indicators is not necessary. However, the connection between the econometric models and the
models in WP4/WP5 are contingent on a well elaborated scenario design.

Scenario design specifications: The parameterization of large-scale models from econometric IDM
models require assumptions on the potential market/policy environments depicted by both models.
Depending on the envisaged application of the large-scale model, the parameters or functions
provided of the IDM model might have to capture a wide range of price variations. A simple example
would be the use of own-price elasticities which calls for defining the relevant range of considered
own- price changes in the IDM model. A systematic approach considering different magnitudes of
price changes will also deliver information on the stability of the elasticities. Deriving a full set of cross-
price elasticities is a more challenging exercise as relevant combinations of price changes need to be
defined. Here, design of experiments and similar methods can help to reduce the number of necessary
experiments and account for co-variances. The discussion on price elasticities underlines further
challenges in interface development which go beyond harmonization of definitions of multiple scales
with the related data processing.

5. QUALITY CRITERIA GUIDELINES FOR MODELS IN THE
MIND STEP TOOLBOX

The MIND STEP model toolbox contains both long-standing models developed and extended over time
within previous projects and new models to be developed in the course of the project. To ensure that
collaboration between partners within the toolbox is easy to realize, we define in this section quality
criteria guidelines which focus on the documentation, testing strategies, and proposed coding
conventions. The quality criteria requirements are loosely based on the “Quality criteria for models
and datasets” from the Wageningen Modelling Group (Appendix 2). Testing strategies (Appendix 3)
and coding conventions (Appendix 1) from existing models are presented to exemplify potential
implementations of the defined quality criteria. It is important to stress that these quality criteria,
however, are to be seen as guidelines and not mandated to be implemented. Especially, the code of
long-standing existing models is not to be rewritten to adhere to coding conventions, nor does this
document impose a fixed testing strategy to be implemented. Rather, it gives examples and guidelines
how to implement and improve code and testing strategies. With the variety of economic models
ranging from mathematical programming and econometric IDM models to regional and global models
encompassing agent-based models, computable general equilibrium, and partial equilibrium models,
we deviate here from the thought of “one size fits all”, but rather set the framework for a consistent

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

29

model quality and transparency of models within the MIND STEP toolbox. In the following, we will
present the quality criteria for the MIND STEP model toolbox:

5.1. Documentation
A short description with purpose/objective of the model and its area of application (spatial and
conceptual) with the underlying theoretical framework has to be provided. The conceptual model is
described and presented as a flow-diagram to improve understanding of the underlying assumptions
and simplifications of the model code. Information on technical implementation and environment
including the programming language (PL), integrated developer environment, graphical user interface
and the version of the used PL and packages should be provided. This basic information is to be made
available on the project website together with contact information for each of the models within the
project.

5.2. Quality management
The quality management for the MIND STEP model toolbox comprises coding conventions and testing
strategies. Coding conventions include syntactic and code commenting guidelines to, first, improve a
common understanding of the model code for all involved project partners, and, second, to ensure
that code can be maintained even if original coders are no longer available. Commenting of code
includes a description of all parameters and variables in the code, as well as their respective units.
Furthermore, with the modular structure of several MIND STEP toolbox models, connections and
dependencies are highlighted in the code. In addition, the coding conventions encompass that input
data and their sources are described, as well as a description of output data to link them to
scientifically relevant indicators. An exemplary coding implementation for the MIND STEP model
FarmDyn written in GAMS is given in Appendix 3.

The implementation of testing strategies is crucial in multi-partner projects which work both with one
model or even with linkages between models. Testing strategies are essential to mitigate the risk of
the error prone developments of models when multiple persons are involved. Such errors can range
from simple syntactic errors given at compile time, to execution errors where mathematical
infeasibilities are returned by the model. Where those two types of errors are most often picked up
by compile time and run time tests, the more hazardous errors lie in wrong outcomes which can have
grave impacts in policy debates and hence require a proper interpretation of specialists in the
respective fields. Test results should not only be validated by the responsible modeller, but also
validated by either literature or external experts and evaluated against a benchmark. The
implemented testing strategy requires that tests are documented, following a certain protocol and
are periodically re-evaluated to ensure that new components of the model are included. Furthermore,
the testing strategy has to be adapted to the specifics of the programming language, type and size of
the model and should also account for modularity in the technical implementation. An exemplary
testing strategy is presented for FarmDyn, and can possibly relatively easily adapted for those models
using the GGIG Graphical User Interface Generator developed by Wolfgang Britz (CAPRI, IFM-CAP,
FarmDyn). Each model should use a version control system (SVN, GIT, or similar) to track and monitor
changes in the model code. This does not only facilitate the collaboration between programmers, but
also helps to follow different development path of the model and to simplify the merging of different
model threads. Project partners with models using multiple branches are encouraged to have a
common development plan to prevent duplicate work or to alleviate potential conflicts in the
development or data structure.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

30

6. CONCLUSION
This deliverable 3.1 outlined concepts for establishing a modular model toolbox in the MIND STEP
project. A crucial building block for this deliverable was the literature review and in-depth review of
four applied models by Britz at al., 2021. Starting from their approach to structure a modular system
of interlinked models around a core model, chapter 3 provided an overview on the included task and
their respective links and contributions to a common simulation model at farm level. Subsequently,
the links and work-flows related to models at higher organisational scales are outlined in chapter 4.
Due to the importance of model maintenance and quality management, chapter 5 highlighted some
important concepts and pointed to the appendices in the remainder of this deliverable. In there,
guidelines for good coding practices, quality management and model transparency are provided. As
this deliverable aims to serve as a reference handbook for model development and integration for the
MND STEP partners, these appendices may be useful to the involved model developers and users.

7. ACKNOWLEDGEMENTS
This deliverable 3.1 is developed as part of the H2020 MIND STEP project which received funding from
the European Union’s Horizon 2020 research and innovation programme under grant agreement N°
817566.

8. REFERENCES
Arata, L., Donati, M., Sckokai, P., Arfini, F., 2017. Incorporating risk in a positive mathematical

programming framework: a dual approach. Aust. J. Agric. Resour. Econ. 61, 265–284.
https://doi.org/10.1111/1467-8489.12199

Appel F., Balmann, A., Dong, C. and J. Rommel, 2018. FarmAgriPoliS-An Agricultural Business
Management Game for Behavioral Experiments, Teaching, and Gaming. IAMO Discussion Paper
173, DOI: 10.13140/RG.2.2.27125.68320.

Bamberg, Sebastian. "Changing environmentally harmful behaviors: A stage model of self-regulated
behavioral change." Journal of Environmental Psychology 34 (2013): 151-159.

Babcock, Bruce A. (2015): Using Cumulative Prospect Theory to Explain Anomalous Crop Insurance
Coverage Choice. In: American Journal of Agricultural Economics 97 (5), S. 1371–1384. DOI:
10.1093/ajae/aav032.

Britz, W., 2020. Automated calibration of farm-scale mixed linear programming models using bi-level
programming. Discuss. Pap. Ser. “Food Resour. Econ. 2020.

Britz, W. and L. Arata, 2019. Econometric mathematical programming: an application to the estimation
of costs and risk preferences at farm level. Agricultural Economics, 50(2):191–206.

Britz, W., Ciaian, P., Gocht, A., Kanellopoulos, A., Kremmydas, D., Müller, M., Petsakos, A., Reidsma,
P., 2021. A design for a generic and modular bio-economic farm model. Agric. Syst. 191, 103133.
https://doi.org/10.1016/j.agsy.2021.103133

Britz W, Witzke P. CAPRI model documentation 2014, http://www.capri-
model.org/docs/capri_documentation.pdf; 2014

Britz W., Lengers, B,. Kuhn, T. and D. Schäfer, 2016. A highly detailed template model for dynamic
optimization of farms - FARMDYN, University of Bonn, Institute for Food and Resource Economics,
http://www.ilr.uni-bonn.de/em/rsrch/farmdyn/farmdyn_docu.pdf.

https://doi.org/10.1111/1467-8489.12199
https://doi.org/10.1016/j.agsy.2021.103133

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

31

Bussieck, M.R., Meeraus, A., 2004. General Algebraic Modeling System (GAMS), in: Kallrath, J. (Ed.),
Modeling Languages in Mathematical Optimization. Springer, pp. 137–157.
https://doi.org/10.1007/978-1-4613-0215-5_8

Carpentier, A., F. Féménia and Ph. Koutchadé, 2014. Accounting for unobserved heterogeneity in
agricultural production choice models: a random parameter approach. Annual Meeting of the
Agricultural and Applied Economics Association. Minneapolis, Minnesota, Juillet 2014.

Carpentier, A. and E. Letort, 2014. Modelling acreage decisions within the Multinomial Logit
framework: profit functions and discrete choice models. Environmental and Resource Economics,
59(4), 537–559.

Carpentier, A. and E. Letort, 2012. Accounting for heterogeneity in multicrop micro-econometric
models. Implications for variable input demand modeling. American Journal of Agricultural
Economics, 94(1): 209–224.

Chavas, J.-P., and M.T. Holt, 1990. “Acreage decisions under risk: the case of corn and soybeans.”
American Journal of Agricultural Economics 72(3):529–538.

Cherchye L., C. Lovell, W. Moesen and T. Van Puyenbroeck, 2007. One market, one number? A
composite indicator assessment of EU internal market dynamics, European Economic Review 51
(3), 749-779.

Delattre, M., and M. Lavielle 2012. Maximum likelihood estimation in discrete mixed hidden Markov
models using the SAEM algorithm. Computational Statistics & Data Analysis, 56(6):2073–2085.

Delyon, B., Lavielle, M., and E. Moulines, 1999. “Convergence of a stochastic approximation version of
the EM algorithm.” Annals of Statistics 27(1):94–128.

Devilliers, E., A. Carpentier and O.P. Koutchadé, 2021. Uncovering adoption and characteristics of
“low-input” versus “high-yielding” crop management practices for wheat production in France:
a heterogeneous hidden Markov approach. Working paper in progress, UMR SMART-LERCO,
INRAE-Agrocampus Ouest, Rennes.

Dijkstra, E.W., 1982. Selected writings on computing-a personal perspective. Texts and monographs
in computer science. Springer, doi 10, 971–978.

Dixon, B.L., and R.H. Hornbaker, 1992. Estimating the technology coefficient in linear programming
models. American journal of agricultural economics, 74: 1029–1039.

Femenia F. and E. Letort, 2016. How to significantly reduce pesticide use: An empirical evaluation of
the impacts of pesticide taxation associated with a change in cropping practice, Ecological
Economics, 125, 27–37.

Gocht A and N. Röder, 2014. Using a Bayesian estimator to combine information from a cluster analysis
and remote sensing data to estimate high-resolution data for agricultural production in Germany.
International Journal of Geographical Information Science, 28 (9): 1744-1764, doi:
10.1080/13658816.2014.897348.

Gocht, A., 2008. Estimating input allocation for farm supply models. Paper presented at the 107th
EAAE Seminar “Modeling of Agricultural and Rural Development Policies”. Sevilla (Spain), January
29th -February 1st, 2008.

Grashof-Bokdam C., Cormont A., Polman N., Westerhof E., Franke J. and P. Opdam, 2017. Modelling
shifts between mono-and multifunctional farming systems: the importance of social and
economic drivers. Landscape Ecology 32, no. 3 (2017): 595-607.

Happe K., Kellermann, K., and A. Balmann, 2006. Agent-based Analysis of Agricultrual Policies: An

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

32

Illustration of the Agricultural Policy Simulator AgriPoliS, its Adaptation and Behaviour. Ecology
and Society, 11(1).

Harding, M.C., and J. Hausman, 2007. Using a Laplace approximation to estimate the random
coefficients logit model by nonlinear least squares. International Economic Review, 48(4):1311–
1328.

Havlík P, Valin H, Herrero M, Obersteiner M, Schmid E, Rufino MC, et al., 2014. Climate change
mitigation through livestock system transitions. Proceedings of the National Academy of
Sciences.

Hazell P, Bassoco LM, Arcia G (1986) A model for evaluating farmers’ demand for insurance:
applications in Mexico and Panama.” In: Hazell P, Pomareda C, Valdes A (eds) Crop insurance for
agricultural development, issues and experience. Johns Hopkins Univ Press, Baltimore, Maryland,
35–66

Hazell, P.B.R., Norton, R.D., 1986. Mathematical programming for economic analysis in agriculture.
Macmillan, New York.

Heckelei, T., Britz, W., and Y. Zhang, 2012. “Positive mathematical programming approaches–recent
developments in literature and applied modelling.” Bio-Based and Applied Economics 1(1):109–
124.

Heckeleï, T., and H. Wolff, 2003. “Estimation of constrained optimisation models for agricultural
supply analysis based on generalised maximum entropy.” European Review of Agricultural
Economics 30(1):27-50.

Hoog, van der, S. 2017. Deep Learning in (and of) Agent-Based Models: A Prospectus.
arXiv:1706.06302.

Janssen, S., van Ittersum, M.K., 2007. Assessing farm innovations and responses to policies: A review
of bio-economic farm models. Agric. Syst. 94, 622–636.
https://doi.org/10.1016/j.agsy.2007.03.001

Kahneman D. and A. Tversky 1979. Prospect Theory: An Analysis of Decision Under Risk. Econometrica
47(2):263–92.

Koutchadé O.P., Carpentier A. and F. Féménia, 2018. Modeling Heterogeneous Farm Responses to
European Union Biofuel Support with a Random Parameter Multicrop Model. American Journal
of Agricultural Economics, 100(2), 434-455.

Koutchadé, O.P., A. Carpentier and F. Féménia. 2020. Modelling corners, kinks and jumps in crop
acreage choices: impacts of the UE support to protein crops. American Journal of Agricultural
Economics, forthcoming.

Koutchadé, O.P., F. Féménia and A. Carpentier. 2021. Variable input allocation among crops: a random
parameter approach with stochastic constraints using a SAEM algorithm. Selected presentation,
Triennial Congress of European Association of Agricultural Economists, Prague.

Lamperti F., Roventini A and S. Amir, 2017. Agent-Based Model Calibration Using Machine Learning
Surrogates. LEM Working Paper. Available at SSRN: https://ssrn.com/abstract=2943297 or
http://dx.doi.org/10.2139/ssrn.2943297.

Lavielle, M. 2014. Mixed effects models for the population approach: models, tasks, methods and
tools. New York: Chapman and Hall/CRC.

Leip, A., Koeble, R., Rottlan Puig, X., Reuter H. and M. Lamboni, In prep. Homogeneous Spatial Units –
a Pan-European geographical basis for environmental and socio-economic modelling.

Lengers B., Britz, W. and K. Holm-Müller, 2014. What drives marginal abatement costs of greenhouse

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

33

gases on dairy farms? A meta-modelling approach, Journal of Agricultural Economics 65(3): 579–
599

Léon, Y., L. Peeters, M. Quinqu and and Y. Surry. 1999. The Use of Maximum Entropy to Estimate Input-
Output Coefficients From Regional Farm Accounting Data. Journal of Agricultural Economics,
50:425–439.

Lieberherr, K. J., & , I. M. Holland 1989. Assuring good style for object-oriented programs. IEEE
software, 6(5), 38-48.

Louhichi, K., F. Jacquet and J.-P. Butault. 2012. Estimating input allocation from heterogeneous data
sources: A comparison of alternative estimation approaches. Agricultural Economic Review,
13(2):83–102.

Louhichi K., P. Ciaian, M. Espinosa, A. Perni and S. Gomez y Paloma, 2017. Economic impacts of CAP
greening: application of an EU-wide individual farm model for CAP analysis (IFM-CAP). European
Review of Agricultural Economics, https://doi.org/10.1093/erae/jbx029.

Loyce, C. and J.-M. Meynard, 1997. Low input wheat management techniques are more efficient in
ethanol production. Industrial Crops and Products, 6:271–283.

Loyce, C., J.-M. Meynard, C. Bouchard, B. Rolland, P. Lonnet, P. Bataillon, M.-H. Bernicot, M. Bonnefoy,
X. Charrier, B. Debote, T. Demarquet, B. Duperrier, I. Félix, D. Heddadj, O. Leblanc, M. Leleu, P.
Mangin, M. Méausoone and G. Doussinault, 2012. Growing winter wheat cultivars under
different management intensities in France: A multicriteria assessment based on economic,
energetic and environmental indicators. Field Crops Research, 125:167–178.

Loyce, C., J.-M. Meynard, C. Bouchard, B. Rolland, P. Lonnet, P. Bataillon, M.-H. Bernicot, M. Bonnefoy,
X. Charrier, B. Debote, T. Demarquet, B. Duperrier, I. Félix, D. Heddadj, O. Leblanc, M. Leleu, P.
Mangin, M. Méausoone and G. Doussinault, 2008. Interaction between cultivar and crop
management effects on winter wheat diseases, lodging, and yield. Crop Protection, 27:1131–
1142.

McLachlan, G., and T. Krishnan. 2007. The EM algorithm and extensions, 2nd. ed. New York: John Wiley
& Sons.

Mérel, P., and R. Howitt. 2014. “Theory and application of positive mathematical programming in
agriculture and the environment.” Annual Review of Resources Economics 6(1):451–470.

Mittenzwei, K. and W. Britz, 2018. Analysing farm-specific payments for Norway using the Agrispace
model. Journal of Agricultural Economics (https://doi.org/10.1111/1477-9552.12268)

Neuenfeldt S and A. Gocht, 2014. A handbook on the use of FADN database in programming models.
Braunschweig: Johann Heinrich von THUENEN-Institut, 75 p, THUENEN Working Paper 35,
DOI:10.3220/WP_35_2014

Neuenfeldt S, Gocht A, Ciaian P and T. Heckelei, 2018. Explaining farm structural change in the
European agriculture: A novel analytical framework. European Review of Agricultural Economics.
Forthcoming.

Nowicki, P., et al., 2009. Study on the Impact of Modulation. Contract No. 30 - CE-0200286/00-21.
Directorate-General Agriculture and Rural Development, European Commission, Brussels.

Parnas, D.L., 1972. On the criteria to be used in decomposing systems into modules, in: Pioneers and
Their Contributions to Software Engineering. Springer, pp. 479–498.

Pinheiro, J. C., and D.M. Bates. 1996. Unconstrained parametrizations for variance-covariance
matrices. Statistics and computing, 6(3):289–296.

Reidsma, P., Janssen, S., Jansen, J., van Ittersum, M.K., 2018. On the development and use of farm

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

34

models for policy impact assessment in the European Union – A review. Agric. Syst. 159, 111–
125. https://doi.org/10.1016/j.agsy.2017.10.012

Russell, A.L., 2012. Modularity: An interdisciplinary history of an ordering concept. Inf. Cult. 47, 257–
287.

Schouten M., Opdam P., Polman N. and E. Westerhof, 2013. Resilience-based governance in rural
landscapes: experiments with agri-environment schemes using a spatially explicit agent-based
model. Land Use Policy 30, no. 1 (2013): 934-943.

Soregaroli, C., Sckokai P., and D. Moro, 2011. Agricultural policy modelling under imperfect
competition. Journal of Policy Modelling, 33(2), 195-212. doi: 10.1016/j.jpolmod.2010.12.001

Sahrbacher C., A. Sahrbacher and A. Balmann, 2013. Parameterisation of AgriPoliS: A Model of
Agricultural Structural Change. In: Empirical Agent-Based Modelling - Challenges and Solutions,
Editors: Alexander Smajgl, Olivier Barreteau. Springer New York. DOI 10.1007/978-1-4614-6134-
0_6

Spiegel, A., Britz, W., Djanibekov, U. and R. Finger, 2018. Policy analysis of perennial energy crop
cultivation at the farm level: Short rotation coppice (SRC) in Germany, Biomass and Bioenergy
110: 41-56

Stevens, W.P., Myers, G.J., Constantine, L.L., 1974. Structured design. IBM Syst. J. 13, 115–139.

Storm, H., Mittenzwei, K. and T. Heckelei, 2015. Direct payments, spatial competition and farm survival
in Norway. American Journal of Agricultural Economcis 97(4): 1192-1205

Streletskaya, N., S. Bell, M. Kecinski, T. Li, S. Banerjee, L. Palm‐Forster, D. Pannell (2020): Agricultural
adoption and behavioral economics: bridging the gap. Appl. Econ. Perspect. Pol., 42 (1) (2020),
pp. 54-66. https://doi.org/10.1002/aepp.13006

van der Hoek, A., Lopez, N., 2011. A design perspective on modularity, in: Proceedings of the Tenth
International Conference on Aspect-Oriented Software Development. pp. 265–280.

Woltjer, G. and M. Kuiper (eds.) 2014. The MAGNET model - Module description. LEI Report 14-057.
The Hague: LEI - part of Wageningen UR (University & Research Centre). Wageningen, the
Netherlands.

Wu, J., J.X. Wang and S.C. Shadden. 2019. Adding constraints to Bayesian inverse problems.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(1):1666–1673.

https://doi.org/10.1002/aepp.13006

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

35

APPENDIX 1: CODING GUIDELINES FOR CORE MODEL
AND CONTRIBUTED MODULES IN MIND STEP

Objective

The core model in MIND STEP developed in Task 3.2. will be programmed in the programming
language GAMS. The objective of this guideline is to develop a coding convention for all developed
models and contributed modules in MIND STEP written in GAMS to ensure that the code:

• can be easily understood by another programmer

• can be successfully maintained and updated

• and can source an automated code documentation system.

The Java code conventions (http://java.sun.com/docs/codeconv/html/CodeConventions.doc) give the
following reasons to establish coding conventions: “Code conventions are important to programmers
for a number of reasons:

• 80% of the lifetime cost of a piece of software goes to maintenance.

• Hardly any software is maintained for its whole life by the original author.

• Code conventions improve the readability of the software, allowing engineers to understand
new code more quickly and thoroughly.

• If you ship your source code as a product, you need to make sure it is as well packaged and clean
as any other product you create.”

As the models in MIND STEP are developed and maintained by different teams, the arguments above
are also valid for the involved partners. Using code conventions is not “l’art pour l’art”. Whoever has
ever tried to work on program code which was coded by somebody else knows from own experience
that unfortunate naming of symbols, missing or mis-guiding comments, bad structured code, highly
personal coding style etc. can cost a lot of time and provoke terrible errors. It is highly egoistic to spare
a few minutes by writing sluggish, un-documented code, and let others later deal with the problem to
maintain it. The set of rather simple rules compiled in our guide supports us all to save costs and time,
and to ensure that we can maintain in future the code of the models.

Coding conventions in GAMS

Compared to other programming languages such as FORTRAN, PASCAL, C(++), Java or C#, GAMS does
not break its code into functions and/or subroutines which clearly defined inputs and outputs. Equally,
GAMS does not provide scoping for symbols: all GAMS symbols are known and accessible past the
point where they had been declared; they have all global scope. Whereas coding conventions for most
programming languages typically have a strong focus on modularisation of the code and clear scoping,
we need to solve that issue for GAMS differently. Accordingly, naming conventions and clearly
structured code are even more important in GAMS where every symbol has global scope!

Naming conventions

1) Use clear and easy to understand names for symbols and files.

A good name is self-explanatory, but short. Please keep in mind that the code basis of the developed
models can be very large, a name such as “p_emissionFactor” is still rather general (but clearly better
than “p_factor” and much better than “p_f”). In doubt, ask a colleague not familiar with the problem
you are working on if she or he is able to understand the chosen symbol names.

http://java.sun.com/docs/codeconv/html/CodeConventions.doc

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

36

If a symbol name consists logically of several words, each new word except for the first one should
start with upper case (we save space compared to using underscores). That so-called “camelCase” is
a standard e.g. proposed in Java coding conventions:
PARAMETER p_data(rall,cols,rows,years) "Generic data cube";

PARAMETER p_popGrowthRate(rall) "Population growth rate";

An exception can be made if the tokens already comprise acronyms in upper case so that reading
becomes cumbersome:
PARAMETER p_CAPMTRPolicy “Policy parameters for the MTR of the CAP”

In that case, it is better to use:
PARAMETER p_CAP_MTR_policy “Policy parameters for the MTR of the CAP”

Discouraged is the use of short symbols where the meaning is not clear in the context, such as:
PARAMETER i,p,q;

Please keep in mind that the very same name could be used by somebody else for a different symbol!
If you introduce a new symbol, first use “search in files” from the GAMSIDE to make sure that the
symbol name is not already in use.

Always add an explanatory long text to the declaration of symbols, if possible, stating physical units or
other elements helping to provide a clear definition:
PARAMETER p_minFeedSharePerc(regions,animals,feed) “Minimum feed shares per
region, animal and feed stuff in % of dry matter intake”

Bad is:
PARAMETER p_minFeed;

As, (1) no domains are given, (2) the name is ambiguous (could be per animal, in a region …) and (3)
an explanatory text is missing.

Note that vowels often can be dropped to shorten names, e.g. “p_cnsQunt” is almost as easy too read
as “p_consQuant”. The use of “scientific” names such as “p_alpha”, “v_gamma” etc. is discouraged
for two obvious reasons. Firstly, their meaning is far from clearly defined and highly context depending.
Secondly, there is a huge danger that the very same symbol name is introduced somewhere else in
the code, leading to possible conflicts.

Tipp: “Find in files” from the GAMS IDE can be used to find all occurrences of a string over directories
and files – easing dramatically the task to rename a symbol in a project.

2) Let equation names start with “e_”

There is tradition in other GAMS models to let equations end with an underscore which at least for
old code can be kept.

3) Let parameter names start with “p_” and variables names with “v_”.

That eases it dramatically to read equations in model equations as the GAMS notations is ambiguous
in the sense that one cannot see what a parameter is and what a variable.

Parameters which are endogenous during calibration in equations should start with PV_, variables
which are fixed during calibration should be start with VP_. Sets do not a have a prefix. The
conventions should it make easier to understand what type of GAMS symbol is used.

4) Use clear and easy to understand codes for set elements, and always add an explanatory
text to set elements.

5) Usage of sets

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

37

Sets are a central element of the GAMS language. They structure logically the code by spanning the
“problem dimensions”, such as time, space, products or processes. Set names should be clear, but
generally short as otherwise, statements become very long.

6) Use domain checking wherever possible.

Domain checking means that a symbol declaration in GAMS includes the information which sets are
allowed on a specific dimension of a symbol, e.g.
p_maxFeedShare(RALL,PACT,A,FEED) "Maximum shares for each feedingstuff,
expressed in dry matter"

Domain checking might be cumbersome to implement and might require the use of SAMEAS, but it
can avoid terrible errors which are otherwise very hard to detect.

7) Use sub-sets wherever possible.

Sub-sets are derived from other sets. They hence structure a domain clearly.

8) Do not declare the same collection of set members a second time.

GAMS offers the so-called alias for that, the so far mostly used notation in other GAMS models in alias
statements is to add a 1, 2 …, e.g.
ALIAS (regions, regions1, regions2)

If you need the same collection in another set to allow for domain checking, use the possibility to
introduce a complete set in a GAMS set declaration. It is proposed to use for sets which only used for
that purpose the “SET_” notation is seen below, e.g.
SET SET_FUELS /gasoline,diesel/;
SET fuelRows(Rows) /set.SET_FUELS/;
SET fuelCols(Cols) /set.SET_FUELS/;

That notation can also to be used to avoid repeating collections of set elements in sub-sets, e.g.
SET SET_FINFUELS /gasoline,diesel/;
SET SET_RAWFUELS /natGas,crudeOil/;
SET fuels /set.SET_FINFUELS,set.SET_RAWFUELS/;
SET finFuels(fuels) /set.SET_FINFUELS/;

Coding style and structuring

9) Declare symbols used in one file only at the top of that file.

If the file is used in a loop or if statement, so that declaration in that file is not allowed, put the
declarations into a separated file with “_decl” appended to the file name, and store it in the same sub-
directory.

10) Separate processing code from data

Put the numerical data entering the code if possible in the relevant directory under “dat”, and beyond
a certain size, generate a GDX file from tables so that the GAMS code does not comprise an
unnecessary high amount of code lines.

11) Generate files with a clearly defined purpose.

Each file should have clearly defined inputs and outputs, and especially the latter should form a logical
unit. To give an example: a file which defines animal requirements should not as a kind of by-product
correct herd sizes.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

38

12) Avoid unnecessary deep include structures (> 3).

Deep include structures require to open many files at the same time in the editor.

13) Statements

One declaration per line is recommended since it encourages commenting. In other words,
PARAMETER p_level(domain1,domain2);

p_size(domain3);

is preferred over
PARAMETER p_level(domain2,domain2), p_size(domain3);

Each line should contain at most one statement. Example:
iTry = iTry + 1;

iTry = iTry +1; RUNR(MS) = NO;

Avoid lines longer than 80 characters, since they're not handled well by many terminals and tools.

14) Indentation and program flow structures

When an expression will not fit on a single line, break it according to these general principles (from
the Java coding conventions):

• Break after a comma.

• Break before an operator.

• Prefer higher-level breaks to lower-level breaks.

• Align the new line with the beginning of the expression at the same level on the previous line.

• If the above rules lead to confusing code or to code that's squished up against the right margin,
just indent 6 spaces instead.

• Loop and other program structures should be clearly visible by 3 spaces indentation:
LOOP(RU,

 Statements in here must be indented to show the structure of the program

);

• $ operators are generally preferred over IF statements:
p_myParam(RU) $ (p_otherParam) = 10;

is preferred over:
IF (p_otherParam,
 p_myParam(RU) = 10;
);

 And certainly one should not use a loop as shown below – it is not only harder to read, but also
slows down program execution:
LOOP(RU $ otherParam(RU),
 p_myParam(RU) = 10;
);

However, that is bad style to code as follows, as is not immediately visible that several assignments all
depend on the same condition:

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

39

p_myParam(RU) $ (p_otherParam) = 10;
p_myParam1(RU) $ (p_otherParam) = 20;
p_myParam(RU) $ (p_otherParam) = 30;

• Avoid unnecessary complex if and loop structures, or $-controls in statements.

• Remove duplicate code by moving it to an include file

15) $BATINCLUDE

“Batinclude” statements allow passing arguments to an included file. Inside the included file, the
passed arguments are referred to with “%1, %2 etc.” according to the order they are handed over. It
is extremely cumbersome to read such a program as “%6” is simply meaningless. That problem can be
circumvented with the following coding trick which works as a rename:
$setlocal regions %1

p_myParam(%regions%) = p_someOtherParem(%regions%);

16) $ONMULTI may be used only locally for well-motivated cases, followed by $OFFMULTI.

$ONMULTI allows for several declaration of the same symbol. That is really dangerous, as conflicting
use of the same symbol might not be detected.

17) Use of $IF

$IF is a compile time command, i.e. it is defining what pieces of the code are executed.

• $IF should always be replaced by $IFI – the not case sensitive version.

• $IFI should only be used for single line statements:
$IFI %MODE%==Dummy $INCLUDE “dummy\someFile.gms”.

• If several lines refer to the same $IFI statements, $IFHTENI … $ENDIF should be used.
Accordingly, avoid constructions such as:

$IF %MODE%==Dummy p_x(RS) = p_y(RS)
$IF %MODE%==Dummy * p_o(RS)
$IF %MODE%==Dummy * p_z(RS);

 GAMS might treat the second line as a comment (it starts with a “*”)! There, according to the
rule above, use:
$IFTHENI %MODE%==Dummy
 p_x(RS) = p_y(RS)
 * p_o(RS)
 * p_z(RS);
$ENDIF

18) Find a compromise between the number of files included and their length.

Files should whenever possible not be longer than 1000 lines, but also should consists of more than
10 statements or so. A top level module should reveal its structure in the GAMS code.

19) Error trapping

Error trapping means that the code itself comprises tests which throw an error, instead of doing bad
calculation due to missing or erroneous data or provoking run time errors. Imagine e.g. a program
which works on market balances. Besides stock changes, all elements of the market balance are
defined to be non-negative. Continuing with the code while trapping with $ and “if” statements
negative market balance elements is probably the wrong tactic, as the results will anyway not make
sense. It is hence good to test first if such logically nonsense data are present and then to stop
execution and warn the program user about such errors.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

40

20) If an include file has a well-defined data manipulation task, try hard to include a test at
the top of the file which raises an exception if necessary data is missing or does not
satisfy some lowest standard.

Use %system%.fn and %system.incline% so that errors trapped provide information where the
problem happens. Example:
ABORT $ exceptionFilenameRegions "Error in %system.fn%,
line %system.incline%: Population data missing for the following regions:",
problemRegions;

21) Comments

GAMS code is computer code – it is not preliminary designed to provide easy to read text to humans.
Indeed, it is often necessary to write of e.g. equations differently as they are documented in a paper
to allow for an efficient use of GAMS. The meaning of the GAMS code is therefore often not
immediately evident. Mis-interpretation of the code however can provoke bad errors – somebody
might change a statement as she or he has not clearly understood what the purpose is.

Comments, on the other hand, are directed towards our colleagues who want to understand the code
– often, because there is the need to change or debug it. Comments should especially explain those
things which are not easy to deduct from the code itself – they should not repeat the obvious, but
motivate why a certain task is coded in a specific way. Comments also help us to quickly locate a
statement or block of statements related to a specific task. Generally, comments are at least as
important as the GAMS code itself.

22) Introduce yourself!

Those who contribute a bit of code should label it with their name. We use pre-defined file headers
(see next) where the name of the author(s) is one of the fields.

23) Generate a file header explaining the purpose of the file.

Use the predefined template for doing so, so that the HTML based documentation can collect that
information automatically. The following standard pieces of information should be included:

• Name of the author

• Name of the file

• Purpose of the file

• In case of a file used with “$batinclude”: descriptions of the arguments

24) Add clear and easy to understand comments to any not self-explaining GAMS code.

Try hard to write self-explaining code, but assume that it is not possible – hence add comments!
Motivate and explain statements and code structure, instead of repeating what the code does again
in plain English. Good code is like a good paper: it is structured such that the reader can easily follow
the flow; comments support that. A typical example of a completely useless comment which does not
add information is shown below:
* Set P_myParam to P_otherParam
p_myParam(Domain) = p_otherParam(Domain);

Save others the time to deal which such useless comments.

Include references wherever possible to comments, e.g. to the methodological documentation or
project deliverables. If the GAMS code is developed from a reference (e.g. the IPCC guidelines to
structure GHG emissions), note the full reference and the page (see also the section on meta data), so
that the code can be verified quickly.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

41

Comments are introduced in a separate line above the code to comment. The preferred standard style
of a comment referring to a statement is shown in the following. The same indentation as the code
commented upon should be used (i.e. if the code start in column 10, the “---“ starts also in column
10):
* --- Here comes the comment

Block comments should be used to structure a file logically into different sections:
*---

* Here comes the description of the block

*---

It is good style to insert a comment above an include statements which briefly explains the purpose
of the included file.

SVN and testing

The software versioning system SVN allows us to work efficiently as a distributed team of developers,
especially to synchronize easily to the common established code base and to document changes to
the code from version to version. Information on TortoiseSVN, the plug-in for Windows, can be found
at http://tortoisesvn.tigris.org/.

25) Only commit fully functioning and tested code to SVN.

Any exemptions must be made public beforehand and are subject to agreement of all others involved.
That holds especially for the trunk. Any major changes, especially those leading to different results,
should also be announced to all other programmers involved.

Accompany your commit with a clear description what was changed and why. If a whole block of files
is subject to your change, commit them if possible together. Avoid committing whole bundles of
unrelated changes with one commit.

If you introduce complex new features or refactor substantially existing code, provide a separate short
technical note. Such a short note should comprise (1) a short motivation including references to
project deliverables etc., (2) which files had been added (or changed), (3) a clear description of inputs
and outputs, and (4) any unusual technical solution.

26) Update before committing!

Make sure that you have updated the files you plan to commit, and do so before any tests, to make
sure that you are testing the latest available version.

http://tortoisesvn.tigris.org/

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

42

APPENDIX 2: QUALITY CRITERIA FOR MODELS AND
DATASETS ACCORDING TO THE WAGENINGEN
MODELLING GROUP.

This section gives an overview on the quality criteria applied by the Wageningen Modelling Group,
Categorized at 2 quality levels in 22 Requirements within 7 themes across 3 perspectives on quality.

For more information see https://intranet.wur.nl/Project/WRModellingToolbox, or contact
Geerten.Hengeveld@wur.nl

Perspective: Science & Technology (ST)

ST.1 The model/dataset is described

1 THERE IS A GENERAL DESCRIPTION OF THE MODEL/DATASET
A purpose * area of application * theoretical framework * paradigms
The general description includes statements on the purpose/goal/aim in developing the
model/dataset. It provides a delineation of the area of application both spatial (generic (e.g., field,
country) or specific (e.g., Netherlands, Wageningen) and conceptual (e.g., under constant climate).
With the theoretical framework the world as addressed within the model/dataset is framed according
to some basic paradigms and core assumptions.

2 THE CONCEPTUAL AND FORMAL MODEL ARE DOCUMENTED
A explicitly documented * assumptions * simplifications * embedded in literature
The theoretical framework is worked out into a conceptual model (most relevant components and
their relationships/dependencies) and subsequently into a formal model (mathematical model,
decision tree, database structure etc.). The assumptions and simplifications made at each step are
presented along with their justification (e.g., a table with assumptions). The formal model is explicitly
documented (e.g., a full set of formulae, decisions, measurements). This is embedded in scientific
literature as illustrated by targeted references.

AA motivated complexity * peer-reviewed scientific publication
From the idea that the model should be as simple as possible, but not more simple than that, a
reflection is included on the relationship between the complexity of the conceptual and formal model
(e.g., number of variables included, statistical design, number of equations, precision reached) and
the foreseen use (e.g., application, data availability, evaluation options, past experience). The
model/dataset has been published in a peer reviewer scientific journal.

ST.2 The technical implementation of the model/dataset is documented

1 THE IMPLEMENTATION IS DOCUMENTED
A Basic structure * flow diagram

https://intranet.wur.nl/Project/WRModellingToolbox

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

43

The documentation of the implementation should support the tech-savvy reader in the interpretation
of the computer code, scripts etc.. A flow diagram highlighting the main modules of the program, or
a database scheme is provided. It is considered good practice to explicitly provide a link between the
elements in the diagram and the text.

AA Code commenting * motivated (modular) design * code review
The structure of the program is motivated, consistent, and modular where relevant. Code is
commented. Discussing choices for algorithms and model structure facilitates interpretation of the
logic of the program or database. A code review (external to the development team) is performed to
get feedback on best-practices, consistencies and potential (minor) programming errors. This review
is to be organised by the development team. The feedback from the code-review is used in refining
the development plan.

2 THE TECHNICAL ENVIRONMENT IS DOCUMENTED
A Language * IDE * settings * limitations
The development environment is documented, both in general and specific terms. This includes the
computer language, IDE, versions used and critical settings. Technical limitations due the
implementation (e.g., numeric precision, memory or multi-processor use) are mentioned.

3 THE MODEL/DATASET IS TESTED
A Tests documented * protocol * untested components named
There is a clear list/table (protocol) of tests that can / are relevant / need to be performed on the
model/dataset to ensure correct technical implementation of the model/dataset (e.g. unit tests, order
of magnitude tests, checksums, algebraic or numerical recalculation of simplified or extreme cases).
In the documentation the performance on these tests is noted. Deviations from expected test results
are discussed. If components of the model/dataset are not tested (yet), these components are
identified and a motivation is provided.

AA Tests on schedule * periodic evaluation on completeness
During model/dataset implementation tests are performed on a regular basis to ensure correct
implementation. Periodically the protocol is evaluated for missing components of the model/dataset.

ST.3 The parameters, variables, inputs to and output of the model/dataset
are described

1 THE PARAMETERS AND VARIABLES OF THE MODEL/DATASET ARE
DOCUMENTED

A Quantities * units * default values * default source * description
A full list of parameters and variables is provided. For each of these the quantities and units of
measurement are given and a description of the interpretation is provided. When available, default
values are given with their source.

AA Range * Precision
The documentation of the parameters and variables is extended with the range of possible, or likely,
values, uncertainty range for default values and the associated precision is provided (i.e., number of
decimals). N.B. this does not refer to the floating point limit of the implementation.

2 CALIBRATION OF PARAMETERS IS DESCRIBED
A Procedure * results discussed

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

44

Calibration is defined as the deviation of parameter values based on (partial) model output in order
to reach a pre-defined or desired output value. Depending on the model, calibration can constitute
formal (mathematical) calibration, expert judgement or ‘tuning’ of parameters based on literature
review. Calibration is generally applied to estimate values for parameters for which no default values
can be derived based on first principles or experiments. The (preferred or applied) procedure for
calibration is described. Impact of calibration is discussed.

3 THE INPUT AND OUTPUT IS DESCRIBED
A Structure * format * quantities * units * precision * description * link variables & parameters *
version echo
The structure and format of the input and output are described, including quantities, units used and
the precision of values. From the description the link between input/output and the variables and
parameters in the model is clear (linked to formal model description and implementation). The output
should include a reference (echo) to the version number of the model/dataset that generated this
specific output.

AA (Inter)national standards * input echo & timestamp
The choice for input/output in a specific format, or using specific units or projections has implications
for re-use and interoperability. Discuss which international standards are used and why (not). The
output should include a reference (echo) to the input (query) and parameters settings used and time
of execution, as to enable tracking the source of the specific output. Echoing is also important for
extractions of data from (dynamic) databases.

4 THE ORIGIN OF INPUT DATA IS DESCRIBED
A Data preparation pipeline * source * scripts tested
Preparation of data into the format required for operation in the model, or inclusion into the dataset
is described. This can include a clearly delineated data preparation pipeline from source to input.
Scripts used should adhere to the same principles of technical documentation and testing described.

AA Protocol for acquisition * periodically updated
A protocol for acquisition of (raw) data is mostly appropriate for (dynamic) datasets or periodically
performed standard calculations. Such a protocol includes source of data, measurement protocol, and
contact persons for institutional sources. This protocol is periodically updated.

ST.4 The functioning of the model/dataset is evaluated

1 A SENSITIVITY ANALYSIS IS PERFORMED
A Tailored to model/dataset type * documented * discussed
The sensitivity of the model to variation in parameter values and initial conditions is analysed. For
different types of models, different methods are appropriate (e.g., one at a time, monte carlo
simulation, analytical sensitivity analysis). Sensitivity of different components of the output to the
same input can be different. The sensitivity analyses performed are documented, motivated and the
results are discussed, e.g., with respect to model performance, precision or accuracy of measurements
and input data.

AA Protocol * evaluated
The sensitivity analysis is performed according to a protocol that prompts repeated sensitivity analysis
for subsequent (sub)versions of the model. N.B. changes in one part of the model can impact the
sensitivity to other parts of the model. Periodically this protocol is evaluated for completeness.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

45

2 AN UNCERTAINTY ANALYSIS IS PERFORMED
A Qualitative discussion
The uncertainties underlying the assumptions, structure and data sources are analysed in a qualitative
way, naming both known and unknown uncertainties. The documentation includes a brief description
of the methods used. The results of the analysis are interpreted and discussed, e.g. with respect to
model performance and reliability of the output/dataset. For datasets, this includes an analysis of the
measurement error and sample design.

AA Quantitative analysis * evaluated
With the quantitative uncertainty analysis, the impact of known and quantifiable uncertainties in the
input on the output is analysed. Various methods exist for different types of models, the choice for
the method used should be motivated. The extent of the uncertainty analysis, both with respect to
the quantification of uncertainties in the input, as with respect to the model components and outputs
considered is periodically evaluated.

3 THE MODEL/DATASET IS VALIDATED
A Discussed * non-validated components named
Through validation one judges the validity of model output or dataset content based on external
information. This information can come from various sources (e.g., measurements, literature or expert
judgement). The method of validation used is documented. Components that are not validated (yet)
are named. Validation status of the model/dataset is discussed, e.g., with respect to the interpretation
and reliability of the model output or dataset content.

AA Protocol * evaluated
As with the sensitivity and uncertainty analyses, validation should be performed according to a
protocol for each new version of the model/dataset. The extent of the validation, with respect to
model components and outputs is periodically evaluated, e.g., considering new data, new model
components etc..

4 THE USE OF THE MODEL/DATASET IS MONITORED
A Example studies listed
Monitoring of the use of the model implies that one is aware of the use of the model inside and outside
of the development team, this can range from tracking citations to evaluation of the application of the
model/dataset. From this monitoring, example studies are drawn and referred to.

AA Use & use(r) experience tracked * evaluated * documented
Options for the evaluation of the use and use(r) experience are model/dataset specific. Core is that
the feedback from users (active or passive) is reflected upon, documented and feeds into the
development plan.

5 THERE IS A GENERAL ASSESSMENT OF MODEL/DATASET QUALITY
A Relate goal to: test * sensitivity * uncertainty * validation * use
The performance of the model/dataset (as reflected in the five evaluations: tests, sensitivity,
uncertainty, validation and use) is related to the specifications (goal, intended area of application) to
reflect ‘fitness for purpose’. The fitness for purpose is documented.

AA Include reliability * precision * data used * external review
The general assessment of the quality is extended to include the quality (reliability, accuracy,
precision) of the data used. During an external scientific review a number of scientific peers is asked
to provide a fresh view on the fitness for purpose and relate assumptions to the relevant scientific

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

46

state of the art. The aim of this review is to provide input for future developments (constructive) rather
than to provide a binary judgement.

Development & Organisation (DO)

DO.5 The development of the model/dataset is planned

1 THERE IS A DEVELOPMENT PLAN
A List of plans * progress reported * based on evaluation
There is a point-wise list of planned developments. The progress of these planned developments is
periodically reported. The evaluations of model performance (partly) motivate these plans.

AA Further evaluation * periodically updated
A timeline for the planned developments is provided. To assure continuous development, further -
extended- model evaluations are planned. The development plan, that includes a motivation for the
planned developments, is periodically updated. The time horizon will be model/dataset specific, but
should be mentioned.

2 A VERSION CONTROL SYSTEM IS IN PLACE
A Documented * acceptance criteria * (WUR) central archiving
The method for keeping track of versions is documented, including what is, and what is not under
version control. Version control should encompass both the development versioning (subversions
during implementation) and production versioning (versions released for use). Version acceptance
criteria are documented explicitly. Differences between versions are reported and discussed. The
version control makes use of (WUR) central archiving.

AA Protocol for documenting & code-commenting
The protocol for version control includes a protocol for documentation and code-commenting (e.g.,
who produces text for what type of documentation, during development, and how and at which level
of detail code is commented).

DO.6 The organisation around the model/dataset is planned

1 THE METADATA OF THE MODEL/DATASET IS AVAILABLE
A Domain appropriate format
The metadata is provided in a domain appropriate format. The metadata reported should at least
include items included in the WR modellibrary metadata format, that is available at
https://intranet.wur.nl/Project/WRModellingToolbox.

AA FAIR
Up to date metadata is publicly provided and according to FAIR principles. FAIR principles state that
(meta)data should be Finable, Accessible, Interoperable and Reusable.

2 THERE IS A MANAGEMENT PLAN
A Responsiblities: content * technical * next-in-line * ownership * financial cover
The management plan minimally lists the distribution of core responsibilities; content, technical
development & maintenance, next-in-line responsibility and ownership. (Un)availability of funds to
cover planned developments should be mentioned explicitly.

AA Vision on future * periodically updated

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

47

The management plan is further extended with a vision on the future use and development of the
model/dataset, encompasses current and potential use, anticipated internal and external
developments (e.g., personnel, technical) and how these could provide opportunities or pose threats
to future operation. The management plan is periodically updated.

3 DEPENDENCIES ARE DISCUSSED
A Datasources * (third-party) use
A list is provided with the input and output dependencies of the model/dataset (e.g., updates in source
data, monitoring networks, (third-party) use of model output). With dependencies we aim at
(dynamic) data sources on which future model/database use is dependent, and at (third party) users
that rely on (future) model output or dataset versions.

AA Tracked * Obligations * liabilities
Because these dependencies could pose threats for continuation or might provide opportunities for
shared future development, the continued availability or planned demands from these dependencies
should be tracked. Risks of losing input sources (by lack of alternatives) and explicit obligations for
future operation should be highlighted.

4 EXTERNAL USE IS FORMALISED
A Conditions for use * User support
Conditions for use outside the development group are defined. The responsibility for user support is
named.

AA User agreement * legally checked * financial paragraph
A user agreement is available that is legally checked and in line with the ownership of the
model/dataset. This user agreement contains a financial paragraph, even if no fees are charged.

Interpretation & Use (IU)

IU.7 User documentation is provided

1 INTERPRETATION GUIDANCE IS PROVIDED
A Goal * area of application * theoretic framework * summary of evaluations * general public
Interpretation of model output or dataset contents is in general not trivial. The interpretation implies
understanding of the theoretic framework, conceptualisations and formalisations of the model - i.e.,
the assumptions and simplifications - and of the outcome of model evaluations. Guidance should be
supplied on what these mean for the value of the outcome and on when (not) to use the
model/dataset. This interpretation guidance should be readable for more general public than the
scientific community.

AA Reflection on goal, area of application, structure, complexity
The interpretation guidance is extended with a reflection on the tension between goal, area of
application and complexity of the model, limitations in the implementation, data quality and
availability and the realised model performance.

2 THERE IS A USER MANUAL
A Operation instructions * installation guide * summary of technical documentation * minimal system
requirement * format of input & output * contact information
The user manual includes clear operation instructions, an installation guide, a summary of the
technical documentation, listing the minimum system requirements, and clear documentation of the

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

48

format, structure and content of the user-relevant input and output files. Contact information for user
support is provided.

APPENDIX 3: TESTING STRATEGY AS A KEY ASPECT IN
QUALITY MANAGEMENT OF AGRI-ECONOMIC
MODELS

This appendix presents a basic testing strategy of agri-economic models which aims to improve their
quality management and to facilitate distribution of work over partners. We start by introducing a
layered testing strategy and their basic technical and organizational requirements. This is followed by
a testing strategy example for the IDM model FarmDyn (Britz et al. 2016) technically realized in
connection with GAMS Graphical Interface Generator (GGIG) (Britz 2014). The testing strategy is
layered on three tiers requiring increasing labour input, from compile time tests, to execution run
tests, and finally to outcome tests. The technical implementation is available to all models within the
MIND STEP model toolbox using GGIG such as IFM-CAP and CAPRI. In the case where the GGIG is not
used, the conceptual framework of the three-tier layered testing strategy can be adapted and applied.

1.1 Testing strategy in agri-economic models – Layered testing
and technical basics

Modularity is key for agri-economic models with increasing complexity to safe on the one hand
computational resources and to provide on the other hand flexibility in the assessed entities
depending on the research question at hand. Furthermore, a modular model setup also gives the
option to independently work on one model with multiple developers without too much interference,
allowing developers to focus on specific modules, as modules can be switched on and off. Despite its
advantages, modularity and simultaneous working on the code comes also at a cost, especially when
no agreed testing strategy is implemented, and multiple modules are closely connected.

One can imagine the situation where a developer introduces new code to a module while multiple
other modules are switched off. Assuming the developer does not encounter any problems in his
model setup, he is confident to upload the new model code. There are now four possible outcomes
for other developers downloading the new code and accepting the changes to their versions. First,
everything runs smoothly in their model setup and the outcome is accurate. Second, they are faced
with compilation errors, i.e. syntactical errors. Third, the model returns execution errors which occur
due to e.g. mathematical infeasibilities. Fourth, there are no apparent programming related errors;
however, there are erroneous model outcomes not spotted by the developers. Where compilation
and execution errors are a nuisance for every updating developer, the last type of error is more critical
as it can propagate in subsequent model versions and potentially affect future projects.

Hence, a clearly defined testing strategy is a key aspect of quality management in agri-economic
models. In this section we present a three-layered testing approach which targets the three types of
aforementioned errors: compile time errors, run time errors, and outcome errors. All three testing
blocks require increasing efforts in: definition of test instances, with regard to computation time, and
in controlling their outcomes. A short summary of the most important aspects is provided by table X.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

49

1.1.1 TIER 1 – COMPILE TIME TESTS
Compile time tests check the syntactical correctness of the software code, but do not produce any
numerical output which needs to be assessed. They require thus very limited computation time and
little control efforts, and therefore can be used to cover a large number of different input settings in
the test design. Test instances should reflect the different possible combination of modules, and
option to configure these modules. Based on their short run time, compile time tests should be
executed before each commit of new code by the developer, and additionally automated/by a
designated person in regular time steps. Testing before committing ensures that the developer does
not immediately impact the work of other developers. The additional regular compile time tests
provide a back-up security system for the case that a developer skipped the compilation time tests.

1.1.2 TIER 2 – RUN TIME TESTS
Run time tests comprise tests of key combinations of modules which are most frequently used in the
model applications. These tests aim to prevent that changes in model structure and default
parameterization provoke infeasibilities or execution errors. As run time tests can take longer, there
only a limited number of test instances, however, before each commit developers should do the run
time tests to ensure that there are no infeasibilities in other module combinations. Similarly to the
compile time tests, a regular (automated) check of run time tests should be executed.

1.1.3 TIER 3 –OUTCOME TESTS
Outcome tests focus on checking the plausibility of model outcomes on a selected number of test
instances. Due to the required running time and limited number of potential model experts to check
outcomes, the test instances should be selected carefully and only for the most important
combinations of modules. The aim of these numerical tests should be to prevent that code changes in
the same or in parallel running projects lead to unforeseen outcomes in key results for on-going
applications, and hence would propagate in future research projects as well. Outcome tests might
require considerable time of domain experts to determine if code changes led to unwanted changes
in key indicators. The frequency of numerical tests should be oriented towards the commit activity of
all developers given by established statistics of developing activities in the model. Given the low
frequency of outcome tests, a data file which automatically collects the model results of each
committed version should be implemented to facilitate the identification of versions which led to
outcome changes. The responsibility of numerical tests should be shared among the domain experts
to limit the time burden for each researcher.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

50

 Table 3: Frequency, responsibility, and time investment for testing in agri-economic models

 # of instances Responsible
person Frequency Time

investment

Compile time tests Very High
Developer Each commit Low

Model expert Weekly Low

Run time tests Medium
Developer Each commit Low

Model expert Weekly Low

Outcome tests Low Domain expert
Dependent on
developing
activities

High

1.1.4 TECHNICAL REQUIREMENTS AND ORGANIZATION OF THE TESTING
STRATEGY

Implementing a testing strategy for Mind Step models as described above requires tools such as a
software version system. Technical solutions for software versioning systems are tortoise (SVN) or
GitHub (Git), which can be either hosted locally or through available cloud solutions. Project partners
must be trained in the use of these tools, and the project management must ensure that they are used.
Similar to knowledge of statistical packages or AMLs, training courses on such tools can also be
centralized at department level or above. Especially for young researchers, certified participation in
training courses can foster their career. Considerably resources are necessary to introduce a testing
strategy for a first time, including cost factors such as license fees, dedicated hardware for a model
repository, but also human resources for setting up the technical implementation and the training of
staff.

1.2 The IDM model FarmDyn
FarmDyn (Britz et al. 2016) is a farm-scale bio-economic model realized in the AML GAMS (GAMS
Development Corporation 2019) and hosted on an SVN based versioning system. It depicts in detail
farm management options, such as organic and mineral fertilizer application on a monthly basis.
Typical model configurations in comparative-static deterministic mode comprise between 1.000 to
10.000 variables and constraints. Several dozen of binary or integer variables depict indivisibilities in
investments and labour use, and if-conditions related to command-and-control and opt-in policies.
The constraints comprise equalities and inequalities. The objective function in a deterministic
comparative-static set-up will maximize different elements of the farm-household income, depending
on the model’s configuration encompassing besides profit withdrawals from the agricultural
enterprise also off-farm wages or income of renting out or selling land.

In line with the idea of modularity in the MIND STEP model toolbox, FarmDyn is realized to some
degree in a modular fashion. Blocks of equations relating, for instance, to certain farm branches, can
be integrated in the current model set-up or not. The layout also opens up the possibility to define
case study specific block of equations, to depict, e.g., specific regional command-and-control or opt-
in policy measures. Technically, this type of modularity is mostly realized based on conditional includes.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

51

FarmDyn belongs to the long-standing and accomplished models in the MIND STEP project and
produced several publications within multiple projects (e.g. Lengers et al. 2014, Schäfer et al. 2017,
Kuhn et al. 2019, Seidel and Britz 2020, Heinrichs et al. 2021, Britz 2020).

FarmDyn features a Graphical User Interface (GUI) realized in GGIG, a package realized in Java which
combines an interface generator for GAMS or R based projects with a report generator (Britz et al.
2014). Besides FarmDyn, GGIG is used for a range of other economic models within the Mind Step
project including the IDM model IFMCAP at the EU’s Joint Research Center (Louichi et al. 2018) and
the partial equilibrium model CAPRI (Britz and Witzke 2014).

1.3 Technical implementation of the testing strategy with
GGIG

Like other GUI generators, a control definition file interpreted by GGIG generates user-operable
controls on the interface, typically along with admissible inputs. This eases mainly model steering, as
users select directly from the available input choices in the Look & Feel they are used from other
software packages. GGIG supports two ways to perform model runs. In interactive mode, a user selects
the relevant choice via the GUI (see figure 15). This relates for FarmDyn, for instance, to the chosen
farm branches, if the model is run in comparative-static or dynamic mode, in a deterministic or
stochastic setting, to farm endowments such as land and labour, available crop and technologies etc.,
but also technical choices such as which solver to use. After all choices are made, the model can be
started from the interface. Afterwards, results can be explored either via the GAMS listing or based
on the reports provided by the GGIG report generator, potentially comparing different model runs.
This interactive mode of running the model is not well suited for systematic testing. One would need
to give a tester a document with the predefined input sets for each test. They would need to be
entered manually control-by-control, afterwards a tester would then wait until a run is ready and next
check the results. This is an error prone and tiring process.

Figure 17: FarmDyn’s graphical user interface

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

52

Therefore, the so-called batch mode of GGIG as the second way
to perform model runs is the preferred option for testing. In this
mode, multiple input sets defined in a text file are started
automatically after each other. GGIG stores for each run the
listing file, and reports the used settings and the return code
from GAMS on a HTML page (see Figure 16). The batch mode can
either be started via a dialog from the GUI or be deployed from
a command prompt or other software, which open the doors to
start tests in some automated fashion. Input files for GGIG can
be easily set-up by copy-and-paste from include files, generated
when a GAMS run is started by the GUI in interactive mode.

Figure 18: HTML page with results from test run generator by GGIG

As an additional option, the batch mode of GGIG allows to compare previous against current results.
This requires that both results sets are stored as parameters in so-called GDX containers. GDX is a
proprietary, binary format of GAMS for which application programming interfaces in different
programming languages are available. The two GDX containers with the old and new results are
compared by the GDXDiff utility from GAMS, called from within GGIG. It produces as outcome a
parameter in a third GDX container which reports the differences between the two result sets, subject
to a user chosen threshold. GGIG then read this GDX container and formats its content as HTML code
added to the report, as shown in Figure 18.

This automated calculation of differences is normally
applied to a smaller vector of key model outcomes. The
HTML page reports the number of records where
differences larger than a predefined threshold are found, in
the (artificial) example shown in Figure 3 below these are
23 cases at the chosen threshold of 1%. The user can then
with a mouse click inspect the individual records for

changes, as shown in the lower panel. If changes are considered acceptable, the test is considered
successful. Otherwise, the information which indicators changed by how much might already provide
useful information to find and correct errors.

How to: The batch mode can
be selected from the GUI
menu, item “Batch execution”.
In the new window, the batch
file to run can be selected. The
batch file can be set-up with
information from include files
generated by GGIG.

How to: add a line such as the
following before the
execute=gamsrun in the batch file:

Gdxdiff =

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

53

Figure 19: Automated reporting of differences in GGIG

The input choices offered to the user, defined in the interface definition file from which GGIG
generates the GUI, also span up the potential test range of inputs for the economic model. This opens
up the possibility for automated tests. The batch mode of GGIG can generate automatically test
instances from the available input choice for certain types of controls. These tests build on the default
setting for all controls on the interface. In a loop, for each single selection control such as a checkbox,
all potential settings are subject to a test, documented on the HTML page. Afterwards, the control is
reset to its default and the settings for the next control are tested. Controls which define numerical
input (such as sliders or spinners) are normally not subject to such tests, as introducing a different
number in the code is unlikely to provoke errors in compile time tests. It is however possible to define,
besides the default registered with the control, a second numerical value for a test. This is useful if the
code treats, for instance, a zero different from a non-zero value. Equally, controls can be excluded
from testing, for two reasons. First, the GAMS code itself comprises some tests; they throw an error
at compile time for certain combinations of input settings which are considered illegal. Including these
cases would show failed tests, which is actually not true as the user cannot execute the model with
these settings. Second, the GUI control definitions comprise so-called dependencies. Choosing
between risk behavioural models, to give an example, is only possible for the user if the stochastic
version of the model is used. With the deterministic version being the default, tests of the risk
behavioural models are not possible and therefore excluded from testing. Such cases require defining
tests manually.

1.3.1 COMPILE TIME TESTS – FARMDYN
Solely compiling the model code requires little time, typically less than a second, which opens up the
possibility to perform many compile time tests. The HTML pages generated by GGIG flag runs with
errors in red, which allows to quickly find failed test instances. The compile time tests are mainly

automatically performed by GGIG itself as detailed above. A
major advantage of the automatically set-up tests by GGIG
is that any change in the GUI definitions – which is
equivalent to changing the model’s potential input data set
– is reflected without the need of manually updating test
instances. For Farmdyn, these fully automated tests
comprise currently about 150 different input sets. They
refer partly to different model configurations, such as
comparative-static versus different types of dynamic runs,
but also comprise technical options which should not affect
outcomes, such as switching listings on and off.

How to: To run compile test select
the “batch_test_compilation” in
the batch mode within the GGIG.
After running the batch file, results
can be seen in the HTML output file
as seen in figure 2. Runs with
compile time errors are marked red
and the responsibility for
corrections lies in the person
running the tests before a commit.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

54

To these automated tests a few manually defined test instances are added. They complement cases
which are not captured by testing each control individually with all others at their default values.

1.3.2 RUNE TIME TESTS - FARMDYN
The intermediate layer comprises run time tests where key
farm management choices such as herd sizes and crop
shares are fixed to a known optimal solution for the input
data generated, based on previous model code. These tests
aim at excluding that changes in model structure and
default parameterization provoke infeasibilities. Fixing key
management choices will also reduce solving time, as the
set of fitting integer solutions to given herd sizes and crop
acreages is limited. The GAMS code will throw an error if the
model is integer or otherwise infeasible, such that these
failed test instances can be easily detected in the HTML
report page. Another advantage of these tests is that key
indicators such as profits or Green House Gas emissions are
unlikely to change much when the core farm program is
fixed. Larger changes in such indicators are hence a rather

sure indication of some flaw in recent changes in the code, as long as the former results were deemed
correct.

1.3.3 OUTCOME TESTS - FARMDYN
The final tests focus on checking the plausibility of model outcome on a selected number of test
instances. This is an expensive test strategy. Optimizing a test instance can take up to multiple minutes
due to the integer variables. More important, deciding if a test has failed, should no run-time error
occur, requires a plausibility assessment of simulation results by a FarmDyn researcher. This clearly
restricts the number of test instances which are regularly run, and requires their careful selection. For
the current test strategy, these test cases mostly comprise typical case studies from on-going projects.
The main aim is hence to exclude that code changes in the same or in parallel running projects lead to
unforeseen outcomes in key results for on-going applications.

The plausibility assessment focusses on key indicators such
as profits, herd sizes, crop acreages and some selected
environmental indicators. They can be directly retrieved
from the HTML pages generated by GGIG. Additionally, the
results are collected automatically in an EXCEL workbook,
with one sheet for each test instance. The different
indicators are in the rows, while the columns refer to a
revision number tested. This depicts indicators changes
along the history of code change. To ease the assessment, a
colouring scheme is applied to the relative changes which
visualize the size of the change.

Outcome tests implicitly assume determinism, i.e. that the
same input executed with the same script produces each

time identical results, for instance by different teams which use the same economic model. This is
however not necessarily the case.

First, the software code executing the script might differ. There are, for instance, frequent updates to
AMLs. GAMS.com has released more than fifty versions over the last two decades, which typically also

How to: The outcome result tests
use the same batch file as the
execution test. After running the
tests, the HTML output shows
potential differences for all chosen
indicators against the last revision.
Here, a chose, rotating
representative checks on a regular
basis if significant changes occur
and, if this happens, contacts the
person who committed changes.

How to: To make run time test
select the “batch_test_execution”
in the batch mode within the GGIG.
The execution file contains a list of
predefined farms to check. After
running the batch file, results can
be seen in the HTML output file as
seen in figure 2. The HTML output
file shows if run time errors
occured, such as infeasibilities,
which than requires action by the
testing person.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

55

include updates of solvers available with GAMS1. Improvement in the solver algorithms, such as
related to scaling, might provoke (slightly) different results on the same problem across releases.
Depending on their currently version in use, users might therefore face different results for same input
data and script.

Second, coders might themselves provoke differences in outcome even when using the very same
release of a software product; e.g. by defining maximal solving times for a model instance. With such
limits active, depending on the hardware used and other processes running in parallel on it, a model
might be solved to full optimality or end up as intermediate infeasible or optimal. Such cases might
not be easily detected if they don’t relate to the core model solve. It is not uncommon, to give an
example, to use some constrained optimization problem to find minimal deviations to raw data in data
balancing problems, or when calibrating behavioural or technical parameters during benchmarking.
Such problems might even run in parallel, for instance, for different sectors or regions. Coders might
in such cases have decided to accept e.g. intermediate optimal solutions to keep overall running time
at an acceptable level and might turn off solution reports of such pre-steps to the listing. A user might
therefore even not notice that such problems have not been solved to full optimality which might lead
to unintended changes in input data entering its final simulation model. The impact of this can be
clearly reduced by running such intermediate solves only once for a range of scenarios, to ensure that
differences reflect changes in the shock, only, and not from using (slightly) different data or
parameters.

Third, and most important for the case discussed in here, MIP problems are usually not solved to full
optimality and often run deliberately in non-deterministic mode, such that the solver does not
guarantee identical results on the same problem in repeated runs. This choice is made as non-
deterministic solves are typically faster. Note here that guaranteed determinism from a solver
perspective is defined strictly technical, not from a conceptual viewpoint. For instance, simply
changing the order in which the equations enter the model might change results even in deterministic
mode. The same clearly holds if purely informational equations are added which cannot alter from a
conceptual viewpoint the optimal allocation. There might be subtle changes even in a MIP solution
solved to full optimality in non-deterministic mode, which reflect scaling, feasibility and optimality
tolerances.

What are the consequences of these observations for testing? First, tests should be run in a defined
environment, such as the same software release and hardware, avoiding parallel load. Second, solvers
should be used in deterministic mode. Third, if maximal solution times are deemed necessary,
exceeding them should trigger a run time error instead of continuing execution based on such
intermediate optimal outcomes. These conditions aim at ensuring that differences found must be
based on changes in the code (or input data). Testing becomes much more demanding if (almost)
identical results should also be guaranteed over a range of software releases and hardware set-ups.
This is not discussed in here.

1.4 Statistics on code changes
In order to develop a test strategy, the frequency of code changes must be reflected after which
testing is necessary. A clean checkout of FarmDyn encompasses about 500 files, all added at some
point in the past the first time to the repository, and probably changed later multiple times. Such
changes are called “commits”, and as seen below, commit activity is not equally distributed over time,
but shows peaks. In average, around 170 commits are taking place each year, the maximum number

1 See the overview on past releases on the GAMS website
(https://www.gams.com/34/docs/RN_MAIN.html, visited 2.2.2021)

https://www.gams.com/34/docs/RN_MAIN.html

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

56

so far encountered were around 400 in 2018. This peak year reflects the generation of a so-called
“stable release” where all team members re-integrated changes from their projects in a common
master version. The red area indicates the contribution of the original developer.

Figure 20: Commit activity over the last decade

Source: Generated with Tortoise SVN stats tool

A look at the last year 2020, see Figure 5, shows a span between
a single commit in a month and close to eighty, the average is
around 20. Most changes for a larger part of this year were done
by a team member in a project which expanded the model in
several directions (shown in red, not identical to the original
developer). Around the middle of the year, there was a period
were several developers in parallel changed larger parts of the
code. These are periods were testing is probably most
warranted. Each coder might concentrate his own testing on his
current project input data and model configuration, and code

changes might not be harmonized with each other. In average, there are changes to around 40 files
per months, affecting around 10% of the total code base. Limited commit activity of a team member
might reflect periods of concentration on other research activities, such as data work, literature
research or publication of results. The charts suggest that more or less continuous testing is required,
however, with varying load. The next section discusses a matching layered test approach.

Figure 21: Commit activity in the year 2020

Source: Tortoise SVN stats tool

How to: Statistics graph from
Tortoise can be generated by
producing a log (“Show log”)
and next pressing the “Statistics
button” in the log window.
There are multiple graphs, such
as the selected “Commits by
date”.

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

57

1.5 Test frequency and other details
A regular problem with the tests performed by researchers during their on-going code development
is that not all of their code is fully synchronized with the master version. Their local tests can therefore
fail on the master version once partial code updates are integrated. Maintaining code comprising local
modifications might be necessary for a team member, and be it only to exclude that code changes
committed by others to the master change results. Delaying partial commits, and instead sending off
huge sets of changes files in one commit reduces problems related to inconsistent, more fine-grained
changes. But it might also lead to very long log entries which are hard to digest when looking at the
history of a single file. Commits changing many files might also mean that all other coders have to
invest considerable time to deal with merged files, or even worse, with conflicts in their local working
copies.

Table 4: Overview on the testing strategy in FarmDyn

 Frequency # of test instances Time investment

Compile time tests Every hour if a commit
occurred

~150 Very low

Run time tests Every hour if a commit
occurred

~20 Low

Outcome tests The outcome of run
time instances is
checked once a week

~20 High

To avoid that a model version comprising local modifications is (involuntary) tested instead of the
current master, it is necessary to use a separate so-called clean working copy for the tests, which has
to be kept synchronized with the current head revision. Before tests are run, this local copy must
hence be updated to reflect recent commits. The first two elements of the test strategy for FarmDyn,
which comprise compile and run time tests which do not require manual checks, are run once per
hour if there are new changes to the code and otherwise does not start the testing process. They are
automatically triggered and executed by a Windows Task Scheduler which calls the batch file
containing the compile and execution time test instances. The QM itself is written in R. It is the task of
the current QM manager to check on a weekly basis if a new HTML page with test results is available.
If the page reports failed tests, the QM manager will check the commit log to find out who performed
the commit(s). These team members are informed and asked to correct the errors. They decide then
if they debug the problem themselves, or if they involve additional team members to develop a
solution strategy to fix the error.

Tests belonging to the outcome layer which require manual checks are also run on a weekly basis,
should commits be observed during the week. The automated GDXDiff output will allow checking
quickly if any changes in key indicators have occurred. The QM manager has to check these instances
and to assess if the changes are critical. If this is the case, he will consult with the coders who
committed during the week if the changes are intended or indeed implausible. In the latter case, the
coders will have to decide who will have a look first.

1.6 What to do with failed tests?
Setting up the test strategy is a one-time activity, and updating the test instances is only necessary
when new projects start which require their own test instances, or after larger structural changes to

Deliverable 3.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 817566.

58

the model. That leaves the regular testing as the major work load. Checking the tests themselves is a
repeated activity with more or less known time requirements. As discussed above, this not the case
for failed tests. In many cases, errors can be detected and corrected quickly. In other ones, errors
reflect that some combinations of inputs possible from the GUI cannot be handled by the code. In
these cases, options can be removed, restricted or errors thrown if such input combinations are
detected. It is likely that bug fixing provokes new errors somewhere else, or that further run-time or
outcome errors are detected afterwards when more code is executed by GAMS before aborting after
initial errors are removed. It is therefore recommended to repeat all tests after errors are fixed

1.7 Appendix references
Britz, W. (2014): A New Graphical User Interface Generator for Economic Models and its Comparison

to Existing Approaches, German Journal of Agricultural Economics 63(4): 271-285

Britz, W., & Witze, P. (2014). CAPRI model documentation, version 2014. University Bonn,
https://www.capri-model.org/docs/CAPRI_documentation.pdf

Britz W., Lengers, B., Kuhn, T. and Schäfer, D. (2016): A highly detailed template model for dynamic
optimization of farms - FARMDYN, University of Bonn, Institute for Food and Resource
Economics, Version September 2016, 147 pages.

Britz, W., 2020. Automated calibration of farm-scale mixed linear programming models using bi-level
programming. Discuss. Pap. Ser. “Food Resour. Econ. 2020.

GAMS Development Corporation (2019): General Algebraic Modeling System (GAMS). Version 27.1.0.
Fairfax, VA, USA.

Heinrichs, J., Kuhn, T., Pahmeyer, C., Britz, W. (2021): Economic effects of plot sizes and farm-plot
distances in organic and conventional farming systems: A farm-level analysis for Germany.
Agricultural systems Volume 187

Kuhn, T., Schäfer, D., Holm-Müller, K., Britz, W. (2019): On-farm compliance costs with the EU-Nitrates
Directive: A modelling approach for specialized livestock production in northwest Germany,
Agricultural Systems 173: 233-243

Lengers, B., Britz, W., Holm-Müller, K. (2014): What drives marginal abatement costs of greenhouse
gases on dairy farms? A meta-modelling approach, Journal of Agricultural Economics 65(3):
579–599

Louhichi, K., Ciaian, P., Espinosa, M., Perni, A., & Gomez y Paloma, S. (2018). Economic impacts of CAP
greening: application of an EU-wide individual farm model for CAP analysis (IFM-CAP).
European Review of Agricultural Economics, 45(2)

Schäfer, D., Britz, W., Kuhn, T. (2017): Flexible Load of Existing Biogas Plants: A Viable Option to Reduce
Environmental Externalities and to Provide Demand-driven Electricity?, German Journal of
Agricultural Economics 66(2): 109-123

Seidel, C., Britz, W. (2020): Estimating a Dual Value Function as a Meta-Model of a Detailed Dynamic
Mathematical Programming Model, Bio-based and Applied Economic 8(1): 75-99

	Acronyms/ Abbreviations
	Executive Summary
	1. Introduction
	2. Modular Model Structure
	3. Modular Alignment of Tasks in WP3
	3.1. Overarching model structure: Core model and modules
	3.2. Features of the core model
	3.3. GHG mitigation options and farmers‘ choices
	3.4. Crop management choices
	3.4.1. Random parameter micro-econometric multi-crop models, and farm specific crop acreage elasticities
	3.4.2. Allocating chemical input uses to crops
	3.4.3. Uncovering adoption and characteristics of crop management practices

	3.5. Risk management models

	4. The impact of Modularity on Interactions with WP4 and WP5
	4.1. General guidelines for both overarching and econometric model connections to WP4 and WP5
	4.2. Requirements related to the interface of the overarching model and models in WP4/ WP5
	4.3. Requirements related to the interface of the econometric model and models in WP4/ WP5

	5. Quality criteria guidelines for models in the MIND STEP Toolbox
	5.1. Documentation
	5.2. Quality management

	6. Conclusion
	7. Acknowledgements
	8. References
	Appendix 1: Coding Guidelines for Core Model and contributed Modules in MIND STEP
	Appendix 2: Quality criteria for models and datasets according to the Wageningen Modelling Group.
	Perspective: Science & Technology (ST)
	ST.1 The model/dataset is described
	1 There is a general description of the model/dataset
	2 The conceptual and formal model are documented

	ST.2 The technical implementation of the model/dataset is documented
	1 The implementation is documented
	2 The technical environment is documented
	3 The model/dataset is tested

	ST.3 The parameters, variables, inputs to and output of the model/dataset are described
	1 The parameters and variables of the model/dataset are documented
	2 Calibration of parameters is described
	3 The input and output is described
	4 The origin of input data is described

	ST.4 The functioning of the model/dataset is evaluated
	1 A sensitivity analysis is performed
	2 An uncertainty analysis is performed
	3 The model/dataset is validated
	4 The use of the model/dataset is monitored
	5 There is a general assessment of model/dataset quality

	Development & Organisation (DO)
	DO.5 The development of the model/dataset is planned
	1 There is a development plan
	2 A version control system is in place

	DO.6 The organisation around the model/dataset is planned
	1 The metadata of the model/dataset is available
	2 There is a management plan
	3 Dependencies are discussed
	4 External use is formalised

	Interpretation & Use (IU)
	IU.7 User documentation is provided
	1 Interpretation guidance is provided
	2 There is a user manual

	Appendix 3: Testing strategy as a key aspect in quality management of agri-economic models
	1.1 Testing strategy in agri-economic models – Layered testing and technical basics
	1.1.1 Tier 1 – Compile time tests
	1.1.2 Tier 2 – Run time tests
	1.1.3 Tier 3 –Outcome tests
	1.1.4 Technical requirements and organization of the testing strategy

	1.2 The IDM model FarmDyn
	1.3 Technical implementation of the testing strategy with GGIG
	1.3.1 Compile time tests – FarmDyn
	1.3.2 Rune time tests - FarmDyn
	1.3.3 Outcome tests - FarmDyn

	1.4 Statistics on code changes
	1.5 Test frequency and other details
	1.6 What to do with failed tests?
	1.7 Appendix references

