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EXECUTIVE SUMMARY 
Following up on the previous MIND STEP deliverable 3.1 on the “Specification of model requirements: 

Protocols for code and data”, this deliverable 3.2 provides an outline on how a modular approach to 

model integration was realized in practice. The focus is on the interactions of methods and results 

developed in tasks within the MIND STEP work package 3 (WP3), titled “Development of modular and 

customisable suit of models focussing on the IDM farming unit”. These tasks apply rather 

heterogeneous methods, including micro-econometric analyses of crop-management choices, 

behavioural aspects of technology adoption, or risk-preferences, as well as the usage of farm-level 

simulation models for ex-ante impact assessment of policy and technology options. Integrating these 

approaches requires a conceptual structure that defines the interfaces between them and exploits the 

exchanges of data and methods as much as possible. An important conceptual decision was to select 

a farm-level simulation model as the integrative core of the overarching framework and to develop 

interfaces to empirical and methodological works accordingly. Chapter 2 starts with a discussion why 

the simulation model FarmDyn (Britz et al. 2016) was selected as the core model in this case. An in-

depth survey of four applied farm-level models (Britz et al. 2021) showed that FarmDyn already 

follows modular design principles, which facilitates its extension based on the results from empirical 

and conceptual work in MIND STEP. The detailed representation of farming activities, like the wide 

range for feeding options, the endogenously selectable intensity levels for crops, the explicit 

representation of machinery and buildings, and the detailed representation of variable inputs also 

provide direct links to the different tasks in MIND STEP, like the exploration of GHG mitigation options 

or the inclusion of risk preferences. In the subsequent chapter, conceptual linkages of FarmDyn to the 

different tasks within WP3 are explored and the concept of modularity is highlighted. 

Chapter 3 then summarizes how the proposed concepts are implemented within a modular 

framework. The preparation of data for the Dutch version of FarmDyn is explained, which is then used 

to analyse technical and behavioural aspects of the adoption of GHG mitigation options. This 

application includes additional information based on a survey of Dutch dairy farms and newly 

introduced GHG mitigation measures, which was part of Task 3.3. Possibilities to connect the micro-

econometrically estimated crop-management and cost-allocation models developed in task 3.4 are 

then also discussed, followed by an outline of the work on risk preferences at farm level in Task 3.5. 

In this context, a new risk module for FarmDyn was developed, which permits the direct inclusion of 

empirical findings on risk preferences and risk mitigation measures in model-based simulations. 

MIND STEP, together with the sister projects AGRICORE and BESTMAP, form the AgriModels Cluster, 

which aims at better understanding the impact of individual decision making in agriculture on the 

uptake of policies and technologies. Since inception, the three project have interacted closely with 

regard to data acquisition and dissemination of results. As an outcome of jointly organized sessions 

during past seminars, for instance a simulation model from the AGRICORE project became part of the 

combined modelling activities in MIND STEP. Based on this experience and the work related to 

establishing an overarching framework for model integration in MIND STEP WP3, this report 

concludes with an elaboration on the importance of a network of model developers and users for the 

continued development of a generic and flexible overarching structure with a farm-level simulation 

model at its core.  
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1. INTRODUCTION 
Building an overarching structure for individual decision-making models (IDM) at farm level is a 
declared objective of the MIND STEP project. Conceptual work on the design of a modular system that 
permits flexible integration of empirical work and newly developed features of simulation models has 
started right at the beginning of the project. The most important aspects of modularity in the context 
of farm-level modelling have been discussed in Britz at al. 2021, including the importance to select a 
core model, to which new modules may be linked. This also implies that a clear definition of obligatory 
inputs and outputs (interfaces) is necessary to ensure that the equations in the module can be 
executed, e.g. by providing default values for all parameters. The technical documentation of core 
model and modules, and the development of protocols for contributor should receive particular 
attention from the very beginning if model development and maintenance is to be distributed across 
multiple teams. Definition of inputs and outputs, protocols for module development, and general 
aspects of quality management have been put forward in MIND STEP Deliverable 3.1 on “Specification 
of model requirements: Protocols for code and data” (Müller at al., 2021). Building on the conceptual 
work by Britz at al. (2021) and Müller et al. (2021), the present report outlines how an overarching 
structure for the integration of the farm-level simulation model FarmDyn (Britz et al., 2016) with new 
modules and empirical work within MIND STEP has been realized. 

Overall, the idea of an overarching model is here neither strictly interpreted as one single operational 
stand-alone IDM model, i.e. a one model fits all approach, nor solely as a conceptual idea without 
concrete implementation steps. Rather, a modular structure in which different IDM models present 
in MIND STEP become more flexible, modular and general is proposed, facilitating two-way loose links 
between the different IDM models, including FarmDyn, covering the possibility to apply IDM models 
more easily to different farm samples. 

Chapter 2 first provides a discussion on the selection of FarmDyn as a core model, followed by a 
description of relevant aspects in FarmDyn regarding the connection with other models as well as the 
elements identified in the initial proposal and the extent by which FarmDyn could integrate findings 
and developments from different work packages envisaged in MIND STEP. This moves FarmDyn closer 
to a more generic, modular and flexible IDM (Britz et al. 2021) and thus towards a kind of an 
overarching model within the MIND STEP toolbox. Next, possibilities to let FarmDyn inform other IDM 
models are explored. It will then provide further insights in specific aspects of the model, presented 
in the section behavioural model, technology choice, interface to policies. In addition, more technical 
aspects of FarmDyn are discussed in the calibration and technical implementation section. Chapter 2 
concludes with a discussion on how concepts like generic, modular, and flexible have to be defined in 
the context of an IDM model. 

Chapter 3 then gives an overview on the actual implementation of this overarching structure in the 
MIND STEP project. It is structured along the different tasks within work package 3, namely tasks 3.3 
concerning the implementation and application of FarmDyn for GHG mitigation options in the 
Netherlands, task 3.4 concerning the integration of crop-choice models, and 3.5. on risk preferences 
and -management. 

As the MIND STEP project is part of the AgriModels cluster, it is desirable that the work on an 
overarching structure for IDM modelling permits also the integration of models developed in the 
AgriCore and BESTMAP projects. This is addressed in chapter 4.  

The conclusions on chapter 5 focus on the experiences made across the different modelling teams 
working towards the realization of the overarching modelling structure. It highlights the importance 
of a network of model developers and users, because of the increased complexity and reduced 
transparency and tractability of models that comes with the increased flexibility. 
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2. TOWARDS A MODULAR MODEL STRUCTURE 
 

2.1. Selection of a Core Model 

The modular design principles put forward by Britz et al. (2021) and Müller et al. (2021) distinguish 
between core model and contributed modules. The core model should provide a minimum set of 
equations and the required data for parameterization, as well as possible interfaces to contributed 
modules. This implies that the core model should already follow modular design principles and have 
features, to which additional functionality can be added or which can be replaced by new 
developments. Two IDMs are currently available within the MIND-STEP consortium: IFM-CAP 
(Louhichi et al., 2017) and FarmDyn (Britz et al., 2016). Both were included in the detailed model 
review by Britz et al. (2021), where certain aspects of model implementation and content features are 
compared. Both are mathematical programming models, where an objective function is optimized 
subject to a set of constraints. IFM-CAP features a quadratic objective function and linear constraints, 
whereas FarmDyn is completely linear, but includes integer variables. Important content features of 
both models are shown in Table 1. With regard to regional coverage, IFM-CAP is designed to run for 
all individual farms included in the EU-wide FADN dataset, thus providing a wide regional coverage. In 
contrast, FarmDyn provides richer detail for the representation of farm technology, policy measures, 
factors of production like labour, machinery, and buildings, as well as feed and fertilizer options. This 
level of detail requires substantially more data than is available from EU-FADN and applications of 
FarmDyn are therefore restricted to regions, where the needed information is available. Still, it is 
possible to construct case-study farms for a larger number of regions of the EU for FarmDyn by using 
EU-FADN to identify typical or representative farms and relying on other databases for the 
parameterization of the technology-related parts of the model. From a MIND STEP perspective, three 
blocks of functionalities are particularly important: First, the nutrient and GHG accounting, in 
combination with the possibility to select alternative intensity levels for crop production and flexible 
representation of animal feeding. This is important for the analysis of policy and management options 
aiming at the reduction of GHG and nutrient emissions from agriculture, as addressed in Tasks 3.3. 
FarmDyn distinguishes between alternative input-levels for each crop and permits to include 
maximum and minimum rotation shares. This allows for the usage of empirical results regarding choice 
of input regimes and crop allocation in Task 3.4 because of the very detailed representation of such 
crop management choices in FarmDyn.  Secondly, as many GHG mitigation options also require long-
term investments in machinery and buildings, more detail for types of machinery, their attributes and 
costs are desirable. In addition, permitting endogenous investment decisions, ideally in a multi-
periodic setting, are useful features for policy and technology-related scenarios, e.g. to identify under 
which conditions farmers would switch to less emission-intensive but more costly farm equipment. As 
can be seen from Table 1, FarmDyn provides such features already and is therefore a good candidate 
for the core model from this perspective. A third important feature is the representation of attitudes 
towards risk at farm level and risk-mitigation options, which is the main topic of Task 3.5 in MIND STEP. 
As IFM-CAP has already a quadratic objective function, a typical expected-value – variance approach 
could be implemented without changing the model structure. FarmDyn permits the usage of several 
linearized decision rules for risk utility, most recently including cumulative prospect theory (Britz 2022). 
This is well aligned with the work carried out by the teams involved in Task 3.5.  

Apart from content-related model features, Britz et al. (2021) also review the extent to which the 
models already follow a modular set-up. All of the compared models separate model code from data 
generation. The modularization of equation blocks that are used in the model statement is particularly 
observable in FarmDyn, which is structured along functional units of code for farming activities (e.g. 
equations specific for dairy farming) and permits the inclusion of alternative policy modules, e.g. for 
fertilization regimes.  
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Based on these considerations, it appears that FarmDyn is well suited as a core model of the 
overarching structure, to which newly developed features within MIND STEP can be added. The 
following sections will provide an overview on the structure of FarmDyn in more detail and some 
conceptual considerations for the use of FarmDyn within the MIND STEP overarching structure. 

 

Table 1: Comparison of models with respect to content features 

Model IFM-CAP FARMDYN 

Regional- and product coverage; technology representation 

Regional coverage in the EU covering EU 5 EU countries + Switzerland 

Coverage of farm population almost full case studies 

Individual farms yes (≈80,000 farms) yes 

Representative farms  yes 

Max. no. of crop & animal activities 35/16 case specific 

Max. no. of crop & animal commodities 30/7 case specific 

No. of animal activities per commodity single multiple 

Catch or cover crops yes 

Grassland management two type of grass grazing only or also for cuts, different 

management options*  

Herd flow representation Herds (by age, 

sex, year, months) 

yes yes  

also breeds, feed regime 

Manure types no several 

Management and technology options 

for activities  

no Tillage options, intensity levels** 

Crop rotation yes possible 

Temporal resolution year Year, month 

Plot representation (land quality) no yes 

Policy representation 

Direct payments and common 

organisation of the markets in agricultural 

products (CAP Pillar 1)  (+ set-aside and 

quota, EU’s greening reform)  

Voluntary coupled support & ceiling of 

EU budget endogenous 

yes 

diversification as binary decision  

Nitrate and Water framework directive no in high detail 

GHG policies (CO2 pricing, ceilings) no yes 
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Trade and market policies, Tariff Rate 

Quotas, Tariff cut (e.g., liberalization, WTO 

G20 proposal) 

prototype link 

to CAPRI 

 

Link to other types of models market model link to crop growth models possible to generate I/O 

coefficients 

Factors 

Covered types of land endowments 

(arable/grassland/permanents) 

all no perm. 

Labour constraints no block labour for management of farm and branches, 

available field working days, off-farm labour 

(fractional or in integers) 

Temporal resolution of simulation steps 

towards baseline scenario  

instantaneous yearly, monthly 

Machinery items considered no multiple 

Buildings considered no multiple 

Land markets  no Lease and buying options 

Emission accounting & Indicator calculation 

Climate change adaptation No Scenario dependent 

Environmental indicators  Intensification / extensification, 

pesticide risk, soil erosion, soil organic 

matter, crop diversity 

N- and C-emissions, N- and P balances, GWP**, link 

to LCA with many indicators 

Feed and fertilizer representation 

Feed activities tradeable and non-tradeable fodder 

activities 

tradeable and non-tradeable fodder activities, 

including grazing; feeding regimes distinguished by 

herds, breeds, feed regime, feed, year, months 

Feed constraints energy, protein, min/max shares 

Attributes of fertilizing activities constant intensities crops, plot, tillage, intensity, fertilizer, year, month 

Temporal resolution & Investments 

Multi-period optimization no yes 

Endogenous investment decisions 

Financial constraints  

Economic behavioural assumptions and calibration 

Objective function maximization farm utility 

Including risk component 

maximization of discounted profit withdrawals 

plus returns from off-farm labour, after taxes. 

Stochastic setting: Several decision rules for risk 

utility possible 
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Model type QP+ & MIP++ MIP 

Calibration approach PMP++++ Bi-level 

* grazing, silage, bales, hay; by month; ** GWP: Global Warming Potential; 

+ Quadratic Programming; ++ Mixed Integer Programming;+++ Positive Mathematical Programming 

Source: Derived from Britz et al. 2021 

 

2.2. FarmDyn structure and the connection to identified IDM elements 

As mentioned in the previous chapter, FarmDyn comes already equipped with a modular and flexible 
template structure, where modules are turned on and off depending on the needs of the user. The 
user has the possibility to adjust specific details of model with respect to different farming systems 
(dairy/mother cows, beef fattening, pig fattening, piglet production, arable farming, biogas plant). 
Further, it comprises multiple options with regard to time dynamics (including fully dynamic, 
comparative static or short run) and offers an annual and sub-annual temporal resolution depending 
on the decision variable. The farmer’s behaviour is based on an optimization approach, either 
maximizing the NPV of returns to farm assets (including working off-farm) in the deterministic 
approach or using stochastic dynamic programming to maximizes the expected NPV. The latter 
approach can be extended to cover risk behaviour based on different options (value at risk, MOTAD…). 
In addition, FarmDyn comprises a wider range of environmental indicators including N and P balances, 
GHG emissions, a nitrate leaching indicator, different protein and calories indicators, partly also 
considering emissions from up-stream industries in bought inputs. The modular structure is shown in 
following figure. 

 

Figure 1 Schematic FarmDyn Structure 

Source: Britz et al. (2016) 

 

The implemented technology is detail rich and comprises, inter alia, farm labour needs, machinery, 
stable and manure silo use.  

In the MIND STEP proposal, important IDM elements for WP 3 are already identified and shown in the 
“honey comb” figure and will be most likely expanded and well defined in the working of the WP 3.2. 
To get an idea on the possible linkages between the initially defined IDM elements and the modular 
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structure of FarmDyn, we linked each of the IDM elements to existing modules in FarmDyn which are 
clustered in three groups in the following table.  

 

Table 2: IDM-elements and links to MIND STEP tasks 

IDM elements FarmDyn thematic groups Potential link to IDM models in WP3 
Tasks 

 Behavioural 
module 

Farm economic 
module 

Technology 
modules 

 

Risk management X   Task 3.5 

Profitability and viability  X   

Investment/Financing  X   

Cost accounting  X  Task 3.4 

Feed   X  

Yield   X Task 3.4 

Rotation / Land use   X Task 3.4 

Crop management   X Task 3.4 

Greenhouse Gasses   X Task 3.3 

Labour use  X X  

 

Table 2 provides thematical FarmDyn groups and linkages to the IDM models in WP3 and the included 
tasks. Here, FarmDyn as a partly overarching model for other IDM models can be used in two ways. 
One the one hand, as a source of input data by generating huge data sets (experience can be drawn 
from previous work presented in the next section and will be directed to the work in Task 4.5 for 
machine learning). On the other hand, generated output of the Tasks 3.3-3.5 can be used to improve 
FarmDyn in different ways. 

 

2.3. FarmDyn as a data source of meta-models 

FarmDyn has been used in several applications as a model to generate data which is further used in a 
meta-model. In the applications, a meta-model was defined as a model which quantifies major 
input/output relationships embedded in the structure of the complex model by using standard 
statistical techniques on these results. The standard statistical techniques can here refer also to more 
complex econometric exercises such as in MIND STEP Tasks 3.3-3.5. Examples of the applications can 
be found in Lengers et al. (2014), Kuhn et al. (2019a), Kuhn et al. (2019b).  

 

2.4. Potential improvements of FarmDyn through other IDM models 

2.4.1. Behavioural model 

MIND STEP considers multiple behavioural models which encompass risk (Task 3.5) or even multi-
criteria utility functions (Task 3.3). FarmDyn is based on an optimization approach which clearly limits 
depicting non- rational behaviour. The only currently discussed option to move away from strict 
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rationality is to use a weighted sum of household income (or a risk behavioural model) and absolute 
deviation from a given past farm program to consider cautious behaviour which consequently would 
no longer be fully technical and allocative efficient. While that is relatively simple to build in, a realistic 
parameterization might be challenging. Results from MIND STEP Task 3.3 may provide the needed 
insights. 

If additional arguments beyond household income (after income taxes) are to be represented in a 
utility function in FarmDyn, the limitation to linear constraints and a quadratic strictly convex objective 
function restricts possible extensions. It is however relatively easy to optimize one attribute of the 
utility function such as income under minima for others such as different indicators of environmental 
quality. The resulting sample of points allows to meta-model the multi-dimensional frontier of the 
decision space with regard to the indicators considered. That in turn can be used in combination with 
a more complex utility function in another IDM, for instance based on the work on GHG mitigation 
preferences as described in Helming et al. (2023) and Wang et al. (2022). Here, the recent 
implementation of many different environmental indicators into FarmDyn provides a good starting 
point if environmental considerations shall become part of a more flexible utility function. 

Different risk behavioural models are already built into FarmDyn, currently all linked to a stochastic 
dynamic programming approach which is extremely demanding from a computing perspective. It is 
somewhat doubtful if these approaches can be used for larger farm samples in MINDSTEP. One could 
integrate instead a linearized version of the classic mean-variance model in FarmDyn or another 
linearized form of risk utility, like Tversky-Kahnemann utility (Tversky and Kahnemann, 1992) utility as 
developed in Task 3.5 and integrated in FarmDyn by Britz (2022). 

2.4.2. Technology choice 

Technology choice is driven by the behavioural model and reflects the representation of the choice 
set in an IDM. Based on linear programming, FarmDyn requires distinct Leontief combinations of 
netputs to represent the overall technology. The netputs partly refer to quasi-fixed factors. FarmDyn 
avoids the notion of “unobserved” costs often found in PMP based models and uses a typically quite 
detailed technology representation linked to a rich constraint set. For instance, the field calendar for 
crops depicted specific crop operations is present in a two-weekly resolution during the growth season 
and linked to machinery, intermediate input (such as diesel, plant protection products …) and labour 
needs and available field working days. For each crop, multiple tillage options (plough, reduced till, no 
till) in combination with different intensity levels can be introduced. Nutrient needs of the crops can 
be covered by different types of mineral and organic fertilizer for which different application 
technologies are depicted. Feeding is depicted at a monthly resolution and linked to a detailed 
representation of requirements for the different animals, reflecting for cows the lactation phase. A 
flexible herd dynamics model for cattle captures endogenous choice of calving month, cross-breeding 
and sexing, breaking growth processes in flexibly defined multiple growth periods. Competing options 
can be defined as well. Multiple grassland management strategies which capture the use of biomass 
for grazing, grass silage or hay in each month can be introduced. There is a distinction between 
variable labour needs linked to field and herd operations and blocked size management labour related 
to certain farm branches and the farm operation in total. Technology choice in FarmDyn is also linked 
to a detailed presentation of investments into machines and structures. Parameterization of these 
aspects implies data needs well beyond what can be found e.g. in FADN. 

The development of detailed GHG mitigation options not yet captured by FarmDyn in MIND STEP Task 
3.3 fits well to the concept of FarmDyn. Estimation approaches to represent production functions such 
as used in Task 3.4 could be used to derive representative points for input-output combinations, which 
could be integrated into FarmDyn using the option to endogenously select intensity levels for crops. 
The technology choice set actually covered by an IDM model is clearly linked and can be informed by 
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policy measures to analyse, such as, for instance, the national implementation of the Nitrates 
directives or measures from the second pillar, a point which is touched upon in the next section. 

2.5. Interfaces to policies 

An important reason to move from an aggregate agent paradigm to IDMs is to better represent policy 
impacts emerging from policy measures which depend on single farm attributes, be it (quasi-fixed) 
factor endowments or details of farm management. Examples provide the greening measures under 
the first pillar of the CAP, opt-in measures from the second pillar or agri-environmental command-
and-control measures as often found under the implementation of the Nitrates or Water Framework 
Directives. In many cases, integer variables are required to correctly depict these policies, due to 
various thresholds and if-else conditions. FarmDyn so far covers the greening condition of the current 
CAP and measures related to the German implementation of the Nitrates and Water Framework 
Directives, and a rudimentary implementation of support to organic agriculture. Coupled support to 
specific crop and cattle processes can also be introduced. Its detailed technology representation eases 
and allows analysing such measures in quite some detail (see e.g. Kuhn et al. 2019a, Kuhn et al. 2019b, 
Schäfer et al. 2017). 

Introducing agri-environmental opt-in measures from the second pillar is quite data demanding. It will 
typically require introducing specific crop and herd management options fitting to selected measures. 

2.6. Calibration 

All the points above need also be considered in model calibration which encompasses both 
benchmarking of the model to one observation of given farm data, for instance a record from FADN, 
and but also to observed allocative changes. The ease of benchmarking is a core reason for the 
popularity of the PMP approach, for instance used in IFM-CAP. Drawing on ideas borrowed from PMP, 
FarmDyn now comprises an algorithm based on bi-level programming which can automatically adjust 
different parameters in the model such as expected yields and prices, labour need or feed 
requirements to calibrate an instance of the model for a single farm against given data without 
introducing unobserved costs or revenues. The approach was so far successfully tested in FarmDyn 
for the comparative-static case where just one observation must be recovered. Simultaneous 
calibration to multiple points clearly is a more recommendable approach as it would allow tracking 
allocative behaviour, for instance, by calibrating parameters related to risk behaviour or cautious 
decision taking. However, this requires probably a change in the current objective function and is 
therefore linked to discussion around alternative behavioural models. 

2.7. Technical aspects 

The points touched upon above are also closely linked to the code implementation of an IDM model. 
The application to different farm samples, potentially sourced from different data sets, requires a 
flexible data interface which feeds information on the behavioural model, on the considered 
technology set and, potentially, on calibration targets into the IDM model. FarmDyn has now 
separated data quite strictly from processing code. 

FarmDyn follows  already modular design principles as discussed in Britz et al. (2021) and also in the 
FarmDyn documentation: different farm branches (arable, dairy, mother cows, beef, fattners, biogas) 
can be switched on or off for individual instances of the model, governed by a data-file containing 
individual farm settings. Recent coding efforts aim at a more data driven representation of the 
technology such that list of available crops, definition of field operations for these crops under 
different tillage systems and related machinery and time needs etc. can be flexibly changed without 
the need re-program model equations. First steps have been taken to also allow to exchange code 
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blocks in the model, for instance, to represent policy measures governing nutrient management 
related to Nitrate and Water Framework Directive.  

2.8. Modular Design 

The aspects of FarmDyn mentioned above are also addressed by Britz et al. (2021) Müller et al. (2021). 
In there, the typical workflow when setting up a simulation model like FarmDyn is depicted as in 
Source: Based on Britz et al. (2021) 

Figure 2, namely processing of statistical data or data from other sources into a model database, the 
model parameterization, the combination of blocks of equations into a model instance, and reporting 
of results. Modularity here means that certain units of this workflow can be replaced by the user 
without changing the structure of the model, provided that the new features comply with certain rules. 
A distinction between native and contributed modules is useful here (Source: Based on Britz et al. 
(2021) 

Figure 2). By definition, a native module (the hexagons labelled: “Module” in Source: Based on Britz et 
al. (2021) 

Figure 2) can be always fully parameterized from the general model database, while a contributed 
equation module offering additional functionalities (the purple block of hexagons in Source: Based on 
Britz et al. (2021) 

Figure 2) might require additional data which it must provide by own code for data preparation. The 
same holds for the reporting step.  

 

 

Source: Based on Britz et al. (2021) 

Figure 2 Modular Setup 

 

The most crucial aspects for design and integration of modules in such a setting are the clear definition 
of obligatory inputs and outputs (interfaces) and ensuring that the equations in the module can be 
executed by providing default values for all parameters. This also implies that the technical 
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documentation of core model and modules, and the development of protocols for contributor should 
receive particular attention from the very beginning if model development and maintenance is to be 
distributed across multiple teams with high staff turnover rates. 

Modularity also needs to reflect user-model interaction. Three models reviewed by Britz et al. (2021) 
(CAPRI-FT, IFM-CAP, FarmDyn) feature a GUI, all realized in GGIG (Britz 2014), to facilitate, for instance, 
choosing the included modules or the data base to use. An important question is to which extent a 
specific model configuration (farm branches, activities covered, specific policy implementation etc.) is 
driven by the data base or defined by user interactions. Second, to what extent should the user be 
able to provide (or overwrite) via the GUI data otherwise read from the model data-base, such as, e.g. 
run specific prices, yields or values of policy measures. Third, should the GUI also cover such 
functionalities for contributed modules? If yes, how is this technically achieved and institutionally 
organized? 

An at least partial answer to this question is the concept of wrapper functions pursued in MIND STEP 
(see e.g. Müller et al. 2022 for a concept of the MIND STEP wrappers). These wrappers are functions 
implemented in the R programming language that permit the execution of a suite of models, and the 
exchange of data, from an R environment. While exploiting specific features of the GUI mentioned 
above, it also permits the generation and use of additional input data in the model without the user 
having to work directly with the GUI. 
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3. COUPLING EMPIRICAL AND SIMULATION MODELS 
AT FARM LEVEL 

3.1. MIND STEP Tasks within the overarching model structure 

Within MIND STEP’s WP3, the role of Task 3.2 reported here is to establish an overarching structure 
that integrates methods and results from the other involved Tasks. Following the considerations in 
Britz et al. (2021) and Müller et al. (2021), this is realized by identifying a core model and structures 
for exchange of information with the other tasks, as outlined in chapter 2. The MIND STEP Tasks 3.3, 
3.4. and 3.5. are then conceptually linked to this core model and either contribute to it by providing 
improved input data or modules with additional functionality. Figure 3 summarizes the interactions 
within WP3. Task 3.3 (purple hexagon in Figure 3) investigated new GHG mitigation technologies and 
behavioural aspects of their adoption at farm-level, and thus improve the representation of farmer’s 
decision making in the core model. The improved core model was used within Task 3.3 to derive 
strategies for farm-level decisions to mitigate GHG emissions under a range of policy and technology 
options (Helming et al., 2023). Task 3.4. adds empirical findings on area allocation and intensity levels 
for arable crops, which can be used for the core simulation model by creating farm-specific cost 
allocations to selected crops within a certain crop regime. Finally, Task 3.5 (blue hexagon in Figure 3). 
investigates risk-management behaviour and risk-management instruments for farmers. While the 
former refers to an improvement of the objective function by including cumulative prospect theory, 
the latter increases the number of decision variables by adding the usage of RMIs.  

These interactions between the different tasks in WP3 are structured around the concept of core 
model and modules as depicted in Source: Based on Britz et al. (2021) 

Figure 2 and also applied in the documentation of FarmDyn 
(https://farmdyn.github.io/documentation/FarmDynDocumentation/KeyFeatures/modularity/).  
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Figure 3 Towards the honeycomb: Integration of Tasks 

 

3.2. Linkages to the core model 

The MIND STEP honeycomb implies already a variety of functionalities that should be covered by the 
core model within the overarching model structure, for example endogenous adjustment of yield, 
selected variable inputs, animal rations, land and labour use, investment and farm viability (the colour-
framed, light green hexagons in Figure 3). The previous sections have shown that the FarmDyn model 
is capable to address these aspects and is used as core model, although the main concepts put forward 
in the subsequent chapters will apply also to comparably structured IDM models, for instance IFM-
CAP. Following the logic of Source: Based on Britz et al. (2021) 

Figure 2, modular enhancements of the core model can be achieved by improving and extending the 
model database without making changes to the core model equations themselves, or by contributing 
a module that extends the original model functionalities.  

In line with this broad definition and the description of preferred generic and modular 
implementations of bio-economic farm-scale models (Britz et al. 2021), FarmDyn is structured as a 
modular system where each module comprises a block of equations and variables which can be 
activated depending on the user case. Practically, each module captures a specific farm management 
or methodology domain within a file. Further, the definition of parameters is either done in a module 
if it is only used in that specific file or is organized globally in the set and parameter declaration module, 
templ_decl.gms. Each module can be either a standalone module or is linked to other modules and 
grouped together to build a specific aspect of the farm, e.g. the farm branch, or the core model. The 
structure of the core version of FarmDyn is illustrated in Figure 4. 

 

Source: FarmDyn Documentation 

(https://farmdyn.github.io/documentation/FarmDynDocumentation/KeyFeatures/modularity/) 

Figure 4 Modular structure of the core model 
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The specification of individual farm-instances in FarmDyn is to a large extent driven by the underlying 
database and connection between new modules and the core model hinges on the way in which new 
functionalities can be included in there. It is useful to distinguish between farm-specific datasets and 
general datasets. This distinction is not a statement about the homogeneity of heterogeneity of 
certain types of information across farms, but rather refers to the availability of data from typical farm 
statistics like FADN. Data about acreage, crop yields, herd size, or labour endowments can be usually 
taken from such statistics . General datasets are those typically not available from such sources, e.g. 
crop-specific variable inputs or nutrient contents of animal feeds, although they are in reality farm 
specific. The less farm-specific data is available, the higher is the reliance on regional or national 
average values.  

In general, input data for FarmDyn takes three forms: 

• Global variables, which can be text strings or numerical values, are used to govern the model 
set-up. For instance, if the global variable “herd” is true, then model blocks related to animal 
production are activated, else not. This greatly helps to keep instances of FarmDyn as small as 
possible by only activating the required variables and equations. 

• Farm endowments: farm assets like number of persons working on the farm, available 
cropland, or the number of dairy cows 

• Data-parameters: numerical values, technology coefficients like crop yields or nutrient 
demand, and prices for inputs and outputs. They can be specific for each farm or apply to 
groups of farms. 

The distinction between global variables and data-parameters is important here because it influences 
the way in which the provided data is imported and processed by FarmDyn, and hence how farm-level 
statistics need to be arranged to serve as input to FarmDyn.  

For larger samples of farms, FarmDyn permits loading all farm-specific data and settings from a file 
with default name “farmData_XXX”, where ”XXX” is a placeholder for any file-specific suffix (see “Farm 
sample file” in Figure 5 for a specific case). This file has to be provided in the “GAMS data exchange” 
binary format (GDX) and can contain data parameters as well as global variables. For reasons related 
to the combined use of the Python and GAMS programming languages in the set-up of FarmDyn, 
global variables have to be encoded numerically in the data generation process and are translated 
back to strings when needed.  

 

 

Source: FarmDyn GUI 

Figure 5 Data selection for farm samples in FarmDyn 
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The FarmDyn sample file “farmData_XXX” has to include at least the farm identifiers (“farmIds”) and 
a GAMS-parameter “p_farmData” containing global variables that govern the model compilation and 
execution, e.g. by indicating whether the farm has a dairy branch. Further information passed to the 
model in this instance are general boundary conditions, like the total available acreage of arable land. 
In addition to such global settings, data on crop yields has also be provided, not only to indicate the 
productivity of the arable area, but also to restrict the selection of cropping activities for a certain 
farm model instance. Following the logic of the schematic modular setup depicted in Source: Based 
on Britz et al. (2021) 

Figure 2, this “farmData_XXX.GDX” file is an example of a “model database”. For this reason, the 
following sections will assume that changes to the model database will refer to changes of this 
particular file in the case of FarmDyn. 

 

3.3. GHG mitigation options and farmers‘ choices 

Task 3.3 in WP3 illustrates the extendibility of the MIND STEP model structure by applying FarmDyn 
to Dutch farms and by adding modules to analyse GHG mitigation strategies and behavioural aspects 
of their adoption. Deliverable 3.3 “Report on modelling greenhouse gas emission including adoption 
behaviour of farmers regarding mitigation strategies and interfaces to the MIND STEP model toolbox” 
(Helming et al., 2023) discusses the parameterization of FarmDyn for Dutch dairy and arable farms, 
the GHG accounting, new GHG mitigation technologies and the determinants of their adoption. To 
increase the number of options for on-farm feed production, a more comprehensive module for 
grassland management is also added.  

This chapter outlines how the new developments for the FarmDyn model integrate into the 
overarching model structure. It first gives an overview on the construction of the database for the 
Dutch version of FarmDyn, followed by a description, how results from other activities within Task 3.3 
are connected. 

 

3.3.1. Database Construction Modules for the Dutch version of FarmDyn 

The Dutch version of FADN, the Bedrijveninformatienet (BIN), and the Kwantitatieve Informatie voor 
de Akkerbouw (KWIN) databases are the most relevant sources of information to parameterize 
FarmDyn for Dutch circumstances. BIN is an extensive database for farm statistics that is maintained 
at Wageningen Economic Research. It includes a panel of around 1.500 agricultural and horticultural 
enterprises. The established workflow to make BIN data usable for the FarmDyn model is depicted in 
Figure 6: Dedicated GAMS routines (“readBINData.gms”) import the different tables and merge them 
into a GAMS data parameter, stored in a gdx container (here: “processedData.gdx”). This file contains 
data for all available farms and years. To test the outcome of this first step, several R files, usually for 
single-purposes, were generated. The intermediate datafile is then further processed by a GAMS file 
(here: “build_scenarioData_XXX.gms”) which performs largely aggregation (e.g. averaging several 
years), sub-setting (in case only specific farms should be included in a scenario), and so on. An 
important step is the generation of global variables for FarmDyn and to encode certain information 
which FarmDyn expects as string variables at a later stage. The result of this step is the data container 
“farmData_XXX” with the farmIds for which FarmDyn should be executed and the associated data. 
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Figure 6 BIN and LMM Data processing 

 

A typical head of the resulting GAMS parameter p_farmData is depicted below. The global variables 
derived from BIN contain numerical values that are passed to GAMS parameters as well as structural 
information (“farmBranchDairy”), which is encoded as negative numerical values (here - 1 for “TRUE”). 
The FarmDyn file “build_farmdata.gms” (highlighted in purple in Figure 6) assign values to FarmDyn 
parameters, builds the needed set-elements and global variables that govern the model execution. 

Based on this workflow, it is possible to customize the complete set-up of FarmDyn based on farm-
specific data from BIN.  

A crucial set of data for FarmDyn are the machinery requirements for field operations and the 
associated labour requirements and costs. This information is not available in BIN, at least not in the 
needed detail. Data on field operations was therefore collected from the KWIN database and stored 
in gdx-format and the file cropop_nl was created for inclusion in FarmDyn. The workflow is much 
simpler than in the case of BIN data because field operation data are assumed to be equal for all farms, 
so no aggregation or sub-setting is required. 

 

 

Figure 7 KWIN Data Processing 

 

Typical data-parameters included in AllKWIN.gdx are for instance machinery attributes in the GAMS 
parameter “op_attr”: 
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Head of op_attr 

 

 

The described steps to combine BIN and KWIN datasets in Figure 6 and Figure 7 into a typical database 
expected by the core model as illustrated in Source: Based on Britz et al. (2021) 

Figure 2 can be summarized as shown in Figure 8: 

 

Figure 8 Example for a contributed data processing module 

Processing routines (in purple) have been developed to generate the default database required by the 
model (in blue), using a statistical data source from a country to which the core model was not yet 
applied.  

Applying FarmDyn to a new country also requires adjusting model equations if the default settings are 
not in line with e.g,. national regulations on fertilizer application levels or accounting standards for 
nutrient flows. This is illustrated in Figure 9, which shows the work steps included in the Dutch version 
of the nutrients and emission accounting modules. This module comprises of several GAMS files 
related to the construction of the module’s database and the set-up of the included equations. 

 

 

Figure 9 Elements of the Dutch nutrient intake and emission modules 

 

3.3.2. GHG mitigation options for dairy farms 

Several GHG mitigation options can be selected endogenously by FarmDyn, for instance by replacing 
emission-intensive feeds in the animal rations in the case of substituting soybean meal with on-farm 
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produced feeds, which can reduce upstream emissions. The more detailed representation of grassland 
management options as described in chapter 4 of Helming et al. (2023) falls into this group of 
endogenous mitigation measures. Other mitigation options have to be selected exogenously as new 
settings in the GUI (screenshot below). These mitigation options are discussed in chapter 2 of Helming 
et al. (2023). The newly introduced options are the feed additive Bovaer (R), which reduces emissions 
from enteric fermentation in dairy farming by up to 30% if provided in a minimum quantity. Extending 
the number of lactation periods per cow is a further option, which can be selected in the GUI 
(“LacFloor”) in the screenshot below. 

 

These measures are a contributed module in the sense of Source: Based on Britz et al. (2021) 

Figure 2: Default data for cost and GHG reduction potential of these measures are provided (Figure 
10, the purple database symbol with a “0”), a set of processing steps that convert the default data into 
model parameters, the changes to model equations, and dedicated reporting.  

 

 

Figure 10 Contributed GHG mitigation measures module 

 

3.3.3. Selection of GHG mitigation options 

The exogenously set mitigation options outlined above and in chapter 2 of Helming et al. (2023) can 
be implemented as experiments by extending the farm sample data with the respective settings for 
each farm or farm-type, depending on farm -characteristics (e.g. permitting the extension of lactation 
periods only for highly intensive farms). The survey among Dutch dairy farms carried out in Task 3.3 
of MIND STEP and described in Helming et al. (2021) (see also Wang et al., 2022) contains relevant 
information regarding technology adoption behaviour of farmers. It can therefore be used to 
differentiate farmers’ behaviour within a sample. In line with relative low marginal abatement costs 
of the selected technologies, the survey conducted found that especially intensive dairy farms are 
willing to adopt GHG mitigation technologies first. This information was used to assume different 
adoption patterns per group of dairy farms per GHG mitigation technology, as described for instance 
in the scenario construction in Helming et al. (2023). As an alternative to the stratification of farms 
based solely on livestock density, it was also explored to which extent socio-demographic farm-
characteristics like age or educational attainment, which are available from BIN, could be used to 
group farms according to their likely stage membership. To align with the analyses by Wang et al. 
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(2022), additional data was collected from BIN, permitting to the coefficient estimates for socio-
demographic factors that contribute to a certain stage membership (Figure 11): 

 

 

Source: Own compilation, table screenshot from Helming et al. (2023), Table 12; Wang et al. (2022) 

Figure 11 Socio-demographic factors for determination of stage memberships 

 

If more farm specific information would be available for all farms in the sample, especially cognitive 
and behavioural factors as used by Wang et al. (2022), they can be included as well to better determine 
the likely stage membership of a farm and which mitigation measures are likely to be taken up. 

The described inclusion of additional farm-level characteristics to identify likely stage membership and, 
based on that, determine the exogenously set GHG mitigation measures for groups of farms can be 
seen as a contributed data-generation module within the overarching structure (Figure 12). 

 

 

 

Figure 12 Module: Construction of model database from GHG survey results 

 

3.4. Crop management choices 

The work by Féménia et al. (2023) in MIND STEP Task 3.4 involves the estimation of micro-econometric 
multi-crop (MEMC) and cost-allocation models (MECA). Both model branches are trained and tested 
on detailed French data, but can be used to estimate crop-yields, the corresponding input demands, 
and their costs, as well as the impact on area-allocation at farm level using EU-FADN data. Both models 
are made available as function libraries (“packages”) in the R programming language. The MEMC 
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model with “endogeneous regime switch” is included in the package “RPMulticrop” while the MECA 
model is available from the package “WInputAll”. Both packages will be made available either through 
the main distribution homepage of R packages (CRAN) or through the MIND STEP server at IIASA. Also, 
both models are currently applied to new regions in the EU as described in Appel et al. (2023)  The 
following chapters describe how these MEMC and MECA models can be integrated in the overarching 
model structure proposed in MIND STEP. 

 

3.4.1. Multi-crop model with endogenous regime switch (ERS-MECM) 

Crop-area allocation at farm level depends on two decision: First , which yield per area (intensive 
margin) is economically reasonable given the cost for inputs and the output price, and second, how 
the available area should be allocated to the different crops (extensive margin). In typical MEMC 
models, farmers are assumed to allocate their cropland to the crops of a given crop set in order to 
maximize their expected profit or the expected utility of their profit. This ensures the economic 
consistency of the resulting models. However, currently available MEMC models ignore or poorly 
describe an important decision of crop producers: their choice to specialize on a subset of potentially 
producible crops, which may not have been part of the farm’s production plan before (Féménia et al., 
2023). Such endogenous regime switches (ERS) are of particular importance for the FarmDyn model, 
because the selection of crops that can be included in the model’s cropping plan is set exogenously, 
currently depending on past observations at farm level: If a certain crop was not part of the cropping 
plan during the reference period, it will not be included unless a specific scenario setting demands it. 
When creating scenarios with projected prices for future periods, for instance from market-level 
models like GLOBIOM or MAGNET, the set of cropping options for a certain farm should not only 
depend on past observations. For the creation of such alternative cropping plans, results from the 
ERS-MEMC provide an empirically grounded tool to identify a range of production choices available to 
a FarmDyn instance.  

The allocation of areas to a certain crop is an endogenous variable in FarmDyn, constrained by 
maximum and minimum rotation shares. In addition to regime switches, i.e. which crops are likely to 
be produced on a specific farm type, ERS-MEMC area allocation results can also provide information 
on plausible minimum and maximum ranges of crop rotation shares combined with information on 
changes in marginal costs per crop when share in crop rotation changes. In the perfect situation 
additional Information is available to distribute the costs changes over the different costs components 
in FarmDyn.  

 

3.4.2. Cost allocation model (MECA) 

Information about production costs for each crop at the farm level is very important when analyzing 
multi-crop farms’ behaviours. It is indeed very useful to investigate variable input uses decisions of 
farmers for policy purpose. Production costs per crop can also be used as explanatory variables in 
more complex models of production choice (Letort and Carpentier, 2010). However, information these 
cost per crop is generally not provided in accountancy datasets, such as the EU-FADN data available 
to agricultural economists. The information on variable input uses in these data only concerns 
aggregate expenditure at the farm level, and adequate statistical and\or economic modelling are 
necessary to allocate this aggregate information among the different crops produced by the farms. 
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3.4.3. Integrating MECM and MECA models into the overarching structure 

The empirical MECM and MECA models have been integrated in the R-packages “RPMulticrop” and 
“WInputAll”. Both packages are currently tested for regions in Italy, Romania, Spain and Hungary 
(Appel et al., 2023) within the MIND STEP project. These applications provide information on cost 
structure and cropping decisions in regions, for which no data is directly available from FADN, but 
which is a crucial input for the application of FarmDyn to regions in the EU not covered so far. In 
particular the input cost allocation model permits the parameterization of variable input cost in 
FarmDyn with default as well as with farm-specific estimates. Adjustments of crop yields in response 
to price changes and switches between cropping regimes, e.g. from root-and-tuber to cereals farming 
can be used to update the sample-farm parameters and settings, e.g. by including crops in the farm 
plan that were not observed before.  

 

3.5. Risk management models 

The aim of Task 3.5 is to improve the capacity to model CAP risk management policies by developing 
an IDM model which captures the acceptance and risk-reducing impacts of different risk management 
instruments (RMI). The empirical application focusses on weather risk in crop farms. The analysis is 
based on a large data set combining new survey data with existing data from detailed regional FADN 
and biophysical data (weather, soils, yields) according to the procedures developed in WP2. The survey 
explores risk preferences and attitudes to use RMI of farmers in Germany and Italy. The output of this 
Task is a module to analyse the acceptance and risk-reducing impacts of different RMI. The module 
allows to analyse the propensity to adopt RMI for a range of behavioural theories and farm and 
farmers characteristics (e.g. household; off-farm income; wealth; personal traits), and to analyse the 
impact of RMI that reduce income volatility .  

 

3.5.1. A new risk module for FarmDyn 

The empirical work on risk attitudes in Germany and Italy is based on the concept of Cumulative 
Prospect Theory (CPT, Tversky and Kahnemann, 1992). In this context, risk attitudes are represented 
by a utility function that puts higher weights on potential losses than on potential gains, which is an 
improvement over previous approaches that only accounted for the overall variability of farm 
outcomes, like expected-value-variance (EV) risk utility functions. In addition, the TK utility function 
can be augmented by providing subjective probability weights to address the fact that farmers may 
perceive certain negative outcomes as more likely than suggested by available data. The FarmDyn 
model was set up to incorporate certain types of risk modelling approaches, like MOTAD, but a TK 
utility function was not included until recently (Britz, 2022). A particular challenge was that the TK 
utility function is not linear and cannot directly be used to replace the current objective function 
without converting the model into a non-linear mixed-integer optimization problem (MINLP), which 
are difficult to solve, because they combine the combinatorial nature of mixed integer programs (MIP) 
and the challenges in solving nonlinear programs (NLP). They also require different numerical 
algorithms than the FarmDyn default solver CPLEX. To address these computational challenges, Britz 
(2022) included a linear approximation of the TK utility function.  

In general, the risk behaviour of an individual model instance in FarmDyn can be parameterized within 
the GUI (Figure 13, with parameterization from the original paper by Tversky and Kahnemann, 1992) 
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Figure 13 Default parameters for the TK risk utility function 

 

The CPT risk module is meanwhile (Britz, 2022) included in the main distribution of FarmDyn and it is 
a is a good example for a contributed module in the sense of Source: Based on Britz et al. (2021) 

Figure 2 as it provides default values, processing steps, additional model equations and dedicated 
reporting as shown in Figure 14:  

 

 

Figure 14 CPT Module in FarmDyn 

 

3.5.2. Farm-specific risk preferences 

The shape of the used utility TK function depends on a range of farm characteristics, for instance age and 
university degree of the farm manager as well as acreage and economic size. Duden et al. (2023) estimate 
the relation of such farm characteristics with the shape parameters of the TK utility function as required 
by FarmDyn. Similar to the integration of empirical results for technology adoption preferences as 
described in chapter 3.3.3, the additionally required data were extracted from the FarmDyn database and 
combined with the estimated coefficients by Duden et al. (2023) to generate farm-specific versions of the 
TK function (Figure 15).  
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Source: Own compilation, table screenshot from Duden et al. (2023) 

Figure 15 Integration of estimated TK-Parameters in the FarmDyn database construction 

 

The described workflow represents a contributed module to the overall FarmDyn data generation 
process as it adds new information (farm characteristics) to the database, which is then used to 
calculate farm-specific parameters for the TK risk-utility function. In the sense of the modular concept 
shown in Figure 2, the integration of these risk preferences can be depicted as in Figure 16. More 
details on the integration of TK-function parameters in the sample-farm construction process can be 
found in Müller et al. (2022) in the context of establishing a workflow based on a wrapper function. 

 

 

Figure 16 Parameterization of the CPT risk module 
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4. INTERACTION WITH AGRIMODEL CLUSTER MODELS 
From the very beginning, representatives of the three projects BESTMAP, AGRICORE, and MIND STEP, 
which form the AgriModels Cluster (https://agrimodels-cluster.eu/), have met regularly to identify 
potential overlaps, synergies, and project results that are of common interest. The application for EU-
wide FADN data for the respective project consortia was a major topic initially as it showed the 
challenges arising from the recently introduced General Data Protection Regulation (GDPR) and the 
data needs of research projects focussing on individual decision making at farm level. While the 
AgriModels Cluster projects found their specific solutions to this challenge, the general problem that 
data and results at farm level can only be obtained, exchanged, and published subject to severe 
privacy and confidentiality restrictions continued to be a topic of discussion because of the 
requirement that research data and results should be Findable, Accessible, Interoperable, and 
Reusable (FAIR), which has become a widely applied and required principle for data management. This 
topic was addressed by a presentation by AgriCore during a jointly organized session of the AgriModels 
Cluster at the 16th EAAE Congress in July 2021, titled “Using synthetic populations to produce 
representative and anonymous distributions of farm characteristics of the real farmers’ population of 
interest from different data sources”. The proposed concept to generate synthetic populations that 
replicate observed farm-level data in a stochastic sense but avoid the risk of re-identification of 
individual farms was recognized as useful for future projects with the objective to model individual 
decision making processes.  

Following the positive experience with jointly organized workshops and sessions, the projects involved 
in the AgriModels Cluster continued in this manner, e.g. at the workshop on the linking of ABM & CGE 
organized by the BESTMAP consortium (12 and 13th May, 2022) and at the 181th EAAE organized pre-
seminar session on the state of play regarding modelling of individual decision making. The 
presentation by the AGriCore modelling team on a Positive Mathematical Programming (PMP) agent-
based model for ex-ante assessment of regional agri-environmental schemes was further explored 
and led to the participation of the farm level modelling team from AgriCore in data and model 
collaboration in Task 6.4 of MIND STEP. This PMP model provides interactions between farms to 
model long term dynamics on land markets. Challenges are the use of biophysical data to calculate 
emissions and include agronomic restrictions, the modelling of alternative technologies and EU 
coverage, because AgriCore is focussing its modelling activities on three different regions in Europe. 
To foster cooperation, circumvent double work, and enrich the MIND STEP modelling toolbox, the 
AgriCore modelling team is now working together with the MIND STEP modelling teams on mandatory 
input reduction and GHG emission reduction scenarios. The overarching farm model in MIND STEP 
could be used as coefficient generator for the AgriCore model, comparable to the combined use of 
FarmDyn and GLOBIOM. 

  

https://agrimodels-cluster.eu/
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5. CONCLUSIONS 
The present deliverable 3.2 provides an overview on conceptual considerations and implementations 
related to an overarching model structure at farm level in the MIND STEP project. It builds on the in-
depth review of four applied models by Britz at al. (2021) and their proposed design principles for a 
generic, flexible, and modular bio-economic farm-level model, that can be extended and co-developed 
by a network of researchers. The MIND STEP deliverable 3.1 “Specification of model requirements: 
Protocols for code and data” (Müller et al., 2021) operationalized these design principles, in particular 
the concept that the different tasks within work package 3 should be aligned around a core simulation 
model, to which additional functionality and empirical grounding can be added in a flexible and 
consistent way. Among the models reviewed by Britz et al. (2021) were IFM-CAP and FarmDyn, which 
are hosted by partners in the MIND STEP consortium and are both potential candidates for a core 
model. The work carried out in Tasks 3.3, 3.4, and 3.5 and the resulting requirements for the needed 
additional functionalities of the core model made it clear that FarmDyn is well suited for this role. 
FarmDyn was subsequently enhanced to meet the requirements within the MIND STEP project, in 
particular with regard to the representation of GHG mitigation options, the integration of farmers’ 
preferences for their adoption, the inclusion of a wider range of grassland management options, or 
the development of a risk module based on cumulative prospect theory (Britz, 2022), to name a few. 
The new model features came along with additional data requirements, e.g. for grassland 
management options, fertilizer restrictions, or for general farm characteristics needed to derive 
farmers’ preferences. These new data processing steps are also integrated in the workflow around the 
FarmDyn model by adding interfaces to new databases and updating existing ones. Due to the 
immense data requirements of FarmDyn, it was usually applied in case studies for typical or 
representative farms. Applications at individual farm level are in principle possible and the databases 
are constructed to permit this, but in particular for testing and extensive simulations, it appeared more 
practical to execute the model for a smaller number of such typical farms. In addition, privacy and 
confidentiality regulations restrict the exchange of data among modelling teams, which can be 
circumvented by the creation of typical farms based on groups of sufficient size. The flexible 
construction of farm samples and the creation of meaningful farm groups became also part of the 
modelling workflow. Chapter 3 of this report gives an overview on the implementation of these new 
modules in the overarching FarmDyn structure. 

It has to be noted that the described uses of FarmDyn within MIND STEP do not yet fully exploit all 
possible model features. The new CPT risk module (Britz, 2022) has been applied by the teams at 
Thuenen and UCSC based on surveyed farms in Germany and Italy, but has not yet been tested for the 
Netherlands. Also, FarmDyn provides rich dynamic features (as suggested by the model name), which 
are very important for the analysis of investment decisions or for the decision to stop with farming 
altogether. These model features have a huge potential to provide enhanced insights regarding the 
impact of new policy and technology options and their use will be further explored. 

The enhancements of FarmDyn led to a number of interesting applications within MIND STEP and 
improved the collaboration among the different teams of developers, but also caused a range of new 
challenges. Increased flexibility and modularity also means increased complexity, with substantial 
implications for model co-development, testing, and comparison of results between applications 
among the working groups. Comparison of model results, for instance, is only possible if all model 
settings are aligned, but this is already not feasible if, for instance, country-specific fertilizer ordinance 
modules have to be included. The protocols, guidelines, and measures for quality control put forward 
in Müller at al. (2021). can solve such problems only partly. Good coding practices, separation of code 
from data, version control, the usage of test cases, and so on, greatly facilitate the exchange of 
modules, but their application in a new context could be impaired by conflicting settings in other 
modules. An example is the extended grassland module, which was developed in combination with 
Dutch dairy farms under Dutch fertilizer restrictions. Applying this for a German case study may cause 
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conflicts with the German fertilizer restrictions unless the provided default data are adjusted. Such 
content-related problems are difficult to address by pre-defined protocols and can best be solved by 
direct communication between the involved developers. Ensuring the continued use of the newly 
developed modules and data processing routines calls for establishing a network of developers and 
users, that remains in existence beyond the duration of a single project like MIND STEP. On this topic, 
Britz et al. (2021) conclude, that such a network would be essential for ensuring longevity and usability 
of a modelling framework centred around a bio-economic model like FarmDyn. The composition of 
the MIND STEP consortium and the distribution of the development work has already certain 
characteristics of a network as proposed by Britz et al. (2021). The developer teams are hosted mainly 
in public research institutions, i.e., governmental research institutions, European organisations or 
universities. FarmDyn is developed at the University of Bonn, where the main repository is located. It 
was adjusted for Dutch conditions by Wageningen Economic Research (as outlined above and in 
Helming et al., 2023) in close cooperation with the team in Bonn. New GHG mitigation options were 
also first implemented by the team in Bonn, then tested and re-parameterized in an iterative process 
with Wageningen Economic Research. The new CPT risk module was also developed in Bonn (Britz, 
2022) and then applied at Thuenen and UCSC as described in Duden et al. (2023). The involved teams 
form already a core network of developers and users as envisaged by Britz et al. (2021). Following 
their hierarchy of actions for establishing a network (Source: Britz et al. (2021) 

Figure 17), the delineation of core model and modules, the definition of technical interfaces was 
conceptualized in deliverable 3.1 and subsequently implemented as described in this report. The 
repository for FarmDyn is hosted by the Bonn team, which also provides detailed model 
documentation. New modules as developed in MIND STEP can be shared via the repository hosted at 
IIASA (see MIND STEP deliverable 7.4.)  

 

 

Source: Britz et al. (2021) 
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Figure 17 Hierarchy of actions to build a network of model users and developers 

 

Some general problems remain: research organizations and universities rely on third-part funding and 
usually have a high turnover of staff, such that individual knowledge may be lost for a network partner. 
If the network is sufficiently established, this could be compensated by taking over certain 
development responsibility by other partners and inclusion of new partners into the network. Training 
courses, organized sessions during conferences, or even discussion paper series can provide incentives 
for new partners to join the network and provide support. In this sense, the activities in MIND STEP 
can be seen as a first step towards a functioning model network to ensure the longevity of the 
overarching model structure proposed here. 

The outlook is that  a version of FarmDyn as the overarching farm model with the high level of detail 
regarding farm inputs and outputs would already be a valuable addition to the set of models used by 
the EU commission for policy evaluation and design. As the overarching farm model it could serve as 
coefficient generator for the market models and it could give insights into the heterogeneous impacts 
of policies and events on farm level. 
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