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EXECUTIVE SUMMARY 
The tools developed in work package 4 of MIND STEP serve the general purpose of capturing 
interaction of individual farms relevant for economic and environmental outcomes of policy 
interventions. The objective of this deliverable is to describe the purpose and design of the different 
tools developed and to discuss their long-term policy relevance.  

The approaches considered here comprise  

• Task 4.2: The estimation of farm exit rates exemplified for Germany and Norway aiming to be 
the basis for integrating farm structural change into representative farm-level or equilibrium 
models 

• Task 4.3: The investigation of farmers’ preferences and related behavior regarding the 
participation in collective environmental schemes through computer and group experiments 

• Task 4.4: the estimation of conjectural elasticities that capture market power along the supply 
chain and specifically (and for the first time) the power of farmers arising from contractual 
agreements or the formation of producer organizations. The conjectural elasticities can be 
incorporated in equilibrium models for a more realistic representation of price transmission 
along the supply chain 

• Task 4.5: The training of machine-learning-based surrogate models that address the 
computational challenges arising when trying to incorporate detailed farm level models into 
representative larger scale models, here specifically into agent-based models with interaction 
between individual farms on the land market. 

For each of these approaches, the deliverable elaborates on the basic modelling challenge addressed, 
the specific approach employed including the discussion of advantages and limitations, the potentially 
visionary or long-term perspective for the integration of IDMs and upper scale models that the tools 
might allow, and what is to be expected at the end of the project regarding the use of the tools in 
terms of integrated or complementary use. 

In the long run, the approaches considered will strengthen the analysis of the type of scenarios 
currently foreseen in MIND STEP to show the functionality of the toolbox. For example, reducing 
chemical inputs in agriculture by 50% will have strong impacts on the relative profitability of farming 
systems and thereby on farm structural change. The farm exit model and the integration of detailed 
farm models in a regional agent-based model allow capturing structural change implications for the 
farm population and the spatial distribution of environmental outcomes. 
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1. INTRODUCTION 
The impact assessment of agri-environmental policies at the EU level originally mostly relied on 
quantitative simulation models at the market level (Heckelei et al. 2001). Representative farm, 
processing, and consumer agents at the EU or national level interact in a setting that determines 
corresponding average prices, demand, and supply quantities. The design of the models delivers 
relevant analyses as long as general income support policies with minimum domestic prices, trade 
instruments like tariffs and export subsidies, or coupled and later decoupled direct payments are at 
the core of the Common Agricultural Policy (CAP) of the EU. 

When direct payments started to slowly replace price support and the rural development measures 
received increasing budgets under the second pillar of the CAP, regional differentiation of policy 
implementation and impact gained relevance and gave rise to spatially less aggregated model 
developments (Heckelei, Britz, and Others 2001). More recent policy developments respond to an 
increasing demand of society for improving the environmental performance of the EU agricultural 
sector and to tie the CAP budget more closely to this objective. Environmental performance in terms 
of nutrient emissions and biodiversity, for example, directly depend on biophysical conditions at the 
local level. Aggregated representation of production agents struggles to capture the relevant 
processes of such impacts and the regulatory policies addressing them.  At the same time, the public 
became more interested in the distributional aspects of the CAP across farm households.  

These developments lead researchers to think about how individual farm-level models - having long 
been around as normative planning tools (Hazell and Norton 1986) and more recently as behavioral 
models more suitable for policy analysis (Howitt 1995; Heckelei and Wolff 2003; Heckelei and Britz 
2005) - could be specified such that representative analysis across larger regions would be possible 
(Ciaian et al. 2013). The use of template models and EU-wide FADN data in combination with PMP 
approaches to calibrate or estimate individual model behavior using empirical information were the 
basis of the EU covering IFM-CAP model (e.g., Louhichi et al. 2017). It has the advantage of modelling 
real farms but it suffers from the limitations of the FADN database and the lack of explicit and detailed 
representation of technology. FarmDyn moved towards a much richer technology specification 
allowing to simulate policy impacts on technological choices and thereby on related environmental 
indicators (e.g., Britz et al. 2016). This is made possible by letting the collection of individual farm 
models be representative of certain population characteristics instead of trying to model real farms 
for which data information is insufficient. The project MIND STEP builds upon these recent advances 
in representative policy analysis using individual farm models to develop a suitable generic and 
modular bio-economic farm model (Britz et al. 2021). 

Individual farm level models take their environment as given and simulate behavioral responses to 
exogenous changes in this environment regarding prices, policies, or the availability of technologies. 
In the long run, however, the environment of farms depends on the outcome of the interaction of 
farm agents with each other or with other agents of the agri-food system. Land availability and land 
prices for individual farms strongly determine the structural development of a farm and depend on 
what the neighbors do (Storm, Mittenzwei, and Heckelei 2015). Farms also strategically collaborate to 
jointly use machines or to improve their market position as input buyers or product sellers. Certain 
environmental outcomes like biodiversity are not decided by individual farm behavior only but by the 
composition of activities at the landscape scale. Finally, the aggregate behavior of individual farms co-
determines general price levels and with it short and long-term profitability of the farm population or 
certain farm types. 

Consequently, there is a considerable benefit of connecting individual farm level models in the context 
of agent-based models at the landscape or regional scale or to allow for consistent feedback loops 
between farm-level models and existing market level models. The tools developed in work package 4 

https://paperpile.com/c/cPgipi/DjGc
https://paperpile.com/c/cPgipi/Lyos
https://paperpile.com/c/cPgipi/POtt
https://paperpile.com/c/cPgipi/Zmv3+SMPr+BIkn
https://paperpile.com/c/cPgipi/Zmv3+SMPr+BIkn
https://paperpile.com/c/cPgipi/TaBc
https://paperpile.com/c/cPgipi/rInH/?prefix=e.g.%2C
https://paperpile.com/c/cPgipi/FXpp/?prefix=e.g.%2C
https://paperpile.com/c/cPgipi/ujtM
https://paperpile.com/c/cPgipi/8Jtq
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of MIND STEP serve this general purpose of capturing interaction of individual farms relevant for 
economic and environmental outcomes of policy interventions. 

It is the objective of this deliverable to describe the purpose and design of the different tools 
developed, including connections and interfaces to IDMs (WP3) and market models (WP5) in terms of 
input/output variables and to discuss their long-term policy relevance. For each of the four subtasks 
of the work package (structural change, collective action, market power, surrogate modelling), we 
address the following in the subsequent chapters: 

1. The basic modelling challenge that each developed tool addresses with respect to capturing 
farm-level interaction and a consistent application of IDMs and aggregate, market level 
models. This includes examples for policies whose impact depends on appropriately capturing 
such processes.  

2. The specific approach in developing the tools including the discussion of advantages and 
limitations.  

3. The potentially visionary or long-term perspective of full integration of IDMs and upper scale 
models that the tools might allow. 

4. What is to be expected at the end of the project regarding the use of the tools. Can they be 
applied in a complementary or integrated manner or is the achievement a preparatory step 
for further future developments? 

  

2. STRUCTURAL CHANGE (TASK 4.2) 

2.1. Basic modeling challenge addressed 

The design of agricultural policies has become more farm-specific in most OECD countries over the 
past decades in the sense that market support is replaced by payments determined by individual farm 
characteristics such as land areas, endowments, production systems and intensity. Recent examples 
from the CAP include the Small Farmers Scheme that simplifies the Single Farm Payment requirements 
for small farms, and ‘greening’ and ‘capping’ agri-environmental payments under Pillar II. 
Consequently, the farm structure is crucial for the actual impact of policy changes at the aggregate 
level and modeling such impacts requires to represent the impact of policy variables and other drivers 
on farm structural change. The task 4.2 consists of two separate activities both aiming at a consistent 
inclusion of farm structural change in quantitative policy analysis of the agricultural sector.  

Farm exit rates in Germany: In order to consistently include farm structural change in aggregated level 
policy models, empirical estimations of exit probabilities are required. For this task we focus on 
Germany but the challenges we have here are similar in other EU countries. To estimate exit 
probabilities for Germany there are at least two methodological challenges: First, the Farm Structure 
Survey (FSS) is often not collected on an annual basis. The interval of surveys in Germany is 3 to 4 
years. While the data covers a rather long period from 1999 to 2020 it might not reveal the concrete 
year a farm exit or entry in the sector. Second, FSS does not provide financial data on income and 
subsidies. This limits opportunities to model determinants for farm exit decisions.   

Estimating the effect of those explanatory variables is crucial to implement endogenous exit decisions 
in a simulation model, for example IFM-CAP. Being able to endogenous model farm structural change 
would strengthen the ability of existing models to consistently analyze the impact of drivers on both 
structural change and agricultural activities related to policy target variables. For example, significant 
changes in financial support will not only change the choice of production activities in the short to 
medium term but also affect the relative profitability of different production systems and thereby the 
share of those in the process of longer-term structural change. 
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Norwegian farm structural change:  In Norway, most subsidies are based on payments coupled to 
production activities and these payments are negatively related to farm size (i.e., crop levels, animal 
herds or the farm as such). Consequently, a direct farm-structural effect of these payments is expected. 
The methodological challenge is (1) to quantify the effect of farm structure and farm structural change 
on the costs of agricultural production and (2) to implement this information in larger scale agricultural 
sector models that do not explicitly consider the farm structure and structural change. In particular, 
the Agrispace model which covers the full population of Norwegian farms applying for subsidies, will 
be used to quantify the above-mentioned effects, and information from Agrispace will be 
implemented in the Norwegian supply module of the CAPRI (Common Agricultural Policy Regional 
Impact Analysis) model. The approach will expand the scope of forward-looking policy analysis with 
larger-scale agricultural sector models enabling the implementation of agricultural and environmental 
policies to depend on farm size (e.g., amount of land or number of animals at farm level) following 
current developments of the CAP.  

2.2. Description of the specific approach 

Farm exit rates in Germany: Most of the literature analyzing exit rates applies binary regression 
approaches. The dependent variable is coded as either being an active farm (0) or one that has exited 
(1). This approach has the advantage of being widely accepted and it revealed several explanatory 
factors that inform exit rates. Most important is the age of the farm holder (most for family farms) 
and the economic situation (income). If the farm holder retires and there is no successor, the farm has 
a higher probability of exiting the sector. Additional factors are usually incorporated in the analysis 
like environmental or climatic variables, off-farm income possibilities or neighboring effects. In this 
project we aim to implement all drivers into the estimation models that previous analyses identified 
as relevant in explaining exit rates. We will also evaluate what explanatory variables are relevant for 
both, the exit estimation model and typical medium-term farm-level simulation models to prepare the 
ground for a consistent application. 

One of the challenges that need to be overcome is the problem of not having financial variables at 
farm level like income. Subsidies can be derived from the formulation of the regulations. Standard 
gross margins for different production activities can serve as a proxy for income after being made farm 
specific, i.e. dependent on the farm’s production activities. We will compare the results with data 
information on the distribution of farm income across different farm types. 

In terms of estimation methodology, we intend to implement machine learning approaches. Some 
machine learning algorithms are specifically suitable for classification problems (here stay or exit) and 
may improve the predictive performance of the model compared to logit regressions (Storm, Baylis, 
and Heckelei 2020). However, results may not be as self-explanatory as those from logit regressions 
given that they typically involve nonlinear functional forms. A careful evaluation of comparative 
advantages is foreseen to decide which approach serves best for our task. Another limitation might 
be the trade-off between rich estimations of exit probabilities and the implementation in the land 
market model, as the exit probabilities are conditional on the characteristics of the estimations 
(selected regions, selected variables), which maybe are not controlled for in the land market model. 
Therefore, it must be tested which final model of the exit estimations serves best for further use in 
the simulation farm models. 

Norwegian farm structural change: The Agrispace model is a recursive-dynamic multi-commodity 
model based on Spatial Equilibrium approach that links results for each farm in Norway and results for 
aggregate farm types at regional level. The basic concept is to utilize information from the full 
population of Norwegian farms applying for direct payments in a model with explicit demand and 
production functions. Agrispace is inspired by the complexity of Norwegian agricultural policies, but 

https://paperpile.com/c/cPgipi/KMdF
https://paperpile.com/c/cPgipi/KMdF
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in principle is applicable to any other regional, national, or European level where similar data are 
available. Agrispace is currently calibrated for the base year 2014. The CAPRI model is a global partial 
equilibrium model for the agricultural sector, with a focus on the European Union and Norway. It has 
been designed for ex-ante impact assessment of agricultural, environmental and trade policies. It has 
a supply module consisting of regional programming models for about 280 regions in Europe and 
detailed coverage of agricultural policies. Moreover, CAPRI has a market module extending to global 
agricultural markets representing bilateral trade between 44 trade regions. CAPRI is currently 
calibrated for the base year 2012. The supply side of the CAPRI model consists of programming models 
with an explicit objective function. 

In a first step, all payments will be expressed as area payments for each farm. This allows us to 
calculate the overall average payment rate for all land and the overall marginal payment rate for the 
last unit of land that belongs to the farm. Aggregating this information at regional level is the basis to 
calculating a farm payment degressivity defined as the difference between the highest and the 
smallest ratio of average payment rate and the marginal payment rate in a region. The result of the 
first step is a regional specific number indicating the degressivity of farm payments. 

In a second step, a series of structured simulations varying the degree of farm payment degressivity 
will be performed with Agrispace. Variations in farm payment degressivity will result in different 
supply responses. A measure of farm payment degressivity will be developed and linked to supply. 
This allows to establish a relationship between the farm payment degressivity ratio and the aggregate 
supply response, e.g., in terms of energy production. The relationship between the farm payment 
degressivity ratio and the supply response will be expressed in terms of elasticities. The hypothesis is 
that the farm payment degressivity ratio is negatively related to the supply response since more 
degressive payments delay farm structural change and lead to higher production costs.  

In a final step, the farm payment degressivity ratio is implemented in CAPRI. The regional supply 
models are based on the ‘regional farm concept’ and do not consider an explicit farm structure. A 
straightforward implementation would be to add an additional term to the objective function of the 
regional supply models that mimic payment degressivity. The parameters of that term will be 
calibrated in such a way that an exogenously given farm payment degressivity leads to the same 
response in CAPRI as in Agrispace.  

2.3. Vision/Long-term perspective  

Farm exit rates in Germany: The long-term vision of this task is to extend the approach to an EU wide 
application. Once a prototype approach is developed that allows using empirically estimated exit 
probabilities within a policy model such as IFM-CAP, extending the approach to other regions is 
conceptually straightforward. From a practical point of view, extending to other regions might be 
limited by obtaining access to the micro-level FSS data, such that similar estimation can be performed 
as for Germany. For regions where access to those data sources is not available the use of alternative 
data sources such as FADN could be explored as a fall-back option. Or the relationships estimated in 
one country (e.g. Germany) could be used for another region, justification of such a transfer crucially 
depend on the comparability of the agricultural systems in the respective regions.  

Norwegian farm structural change: The approach will contribute to a better representation of farm 
structure and payment schemes (e.g., capping of direct payments, payments with size-dependent 
rates) as a determining factor for aggregate supply responses in larger-scale agricultural sector models. 
The envisaged approach aims to improve the policy representation of the Norwegian agricultural 
sector within CARPI. A further integration or transfer to other regions is not foreseen within MIND 
STEP but it might inspire future upscaling for integrating farm structural development and aggregate 
agricultural sector and market models.  
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2.4. Expected project outcome 

Farm exit rates in Germany: We implement the estimated exit decision probabilities into the current 
land market model to account for structural change, developed as a prototype in IFM-CAP. We 
implement the developments of this task for at least ten selected regions compatible with the farm 
exit estimations. As the analysis is done for selected regions, this task serves as a starting point and 
full integration might be a task in future work depending on usefulness and generality of results and 
availability of data for the estimation of exit probabilities in other regions in the EU. The possibility of 
incorporating structural change in terms of some farms exiting the sector which has implications on 
the land market or other spheres like the environment. As it is the starting point with selected regions 
and the first trial, it is rather a preparatory step for future developments.  

Norwegian farm structural change: There is currently no link between Agrispace and CAPRI. It is not 
planned to establish a permanent link between Agrispace and CAPRI. Results from Agrispace will be 
used as input to CAPRI in order to improve the representation of the Norwegian policy system.  The 
model linkage will expand the scope of forward-looking policy analysis in terms of modeling 
agricultural and environmental policies that depend on farm size or the farm structure in a region. 

3. COLLECTIVE ACTIONS (COLLECTIVE AGRI 
ENVIRONMENTAL PAYMENTS) (TASK 4.3) 

3.1. Basic modeling challenge addressed 

In the Netherlands, the Dutch government introduced agri-environmental schemes (AES) to support 
biodiversity conservation and the provision of ecosystem services. Similar approaches are also being 
discussed in other EU countries. However, the successful implementation of such programmes 
warrants collective implementation (Groeneveld, 2018). In other words, an adequate provision of 
ecosystem services will only happen if enough farmers convert their land to these alternative uses. 
Nature conservation outcomes in a region, are in the end, a combined result of the individual decisions 
of farmers in nature conservation (Grashof-Bokdam et al., 2017; Groeneveld, 2018; Westerink et al., 
2017). 

When it comes to individual decision making, farmers sharing a similar landscape are influenced by 
their peers in implementing alternative farming practices. Therefore, behavioral assumptions are of 
particular importance for activities outside the actual economic field of activity of the farms. 
Alternative agricultural activities (e.g. hedgerows, woodlots, flower strips, natural field edges, ditch 
banks, protected areas for ground-nesting) depend on many factors beyond pure economic incentives 
including individual attitudes, learning, collaboration, compatibility with the business concept of the 
farm or bureaucratic demands. For example, Agri-environmental schemes (AES) provide essential 
services for the farmer (e.g., water retention, natural pest regulation, pollination; Harrison et al. 2014) 
but also for society (e.g., aesthetic appreciation, biodiversity conservation; MAES et al. 2013). The 
benefits from collective AES are often more indirect compared to traditional farming activities: 
positive effects are often only shown in the longer term and if the network of nature elements 
surpasses a certain size. Moreover, effective AES measures often require adjustment on landscape 
levels larger than fields or farms and therefore require collective action of several participating farms 
in the corresponding region (biosphere). Hence, the farmer’s interaction with other farmers in the 
landscape shows the collective dimension of AES and other types of Payments for Ecosystem Services 
(PES), which exhibits feedback between farmers and farmers and natural ecosystems (Groeneveld 
2018). 
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Our project aims to provide knowledge on managing ecosystem services and promote functional and 
non-functional biodiversity conservation that include the social aspects and behavioral traits of 
decision making. We do this by analyzing the farmers’ decisions around contributing to ecosystem 
services beyond the farm level by using part of their land for collective AES for flower strips or as 
extensive pasture for creating a protected area for ground nesting birds. 

3.2. Description of the specific approach  

We use a two-step methodological approach to investigate the influences of farmers’ decision to 
participate in collective AES. In a first stage (CoESM) computer agents’ decisions on converting their 
arable land into flower strips is explored by a model framework which uses all possible land allocations 
and related gross margins generated by an imputation process and employs a Genetic Algorithm 
method (Hennen, 2009). We assign computer agents different types of characteristics, depending on 
their willingness to support the transition to nature inclusive agriculture following the implementation 
of the Reilly index (Schouten et al., 2013b). 

In a second stage (FarmAgriPoliS), experiments with real people will be conducted to investigate other 
possible factors besides economic incentives that influence participation in collective AES and to 
experimentally test certain behavioral assumptions and characteristics. 

CoESM: 

We develop the conceptual framework CoESM (Collective Ecosystem Services Management) to model 
farmers’ decision-making towards implementing flower strips at the farm level (Figure 1). Individual 
farmers must decide whether to invest in the provision of pest regulation services on their farms by 
converting arable land into flower strips. Farmers display different decision strategies in selecting their 
land allocation. They rely on recurring habits, imitating peers or role models, making deliberate 
comparisons, and asking friends or colleagues for advice (Kangur et al., 2017). Traditional farming 
optimization models looking at farming decision making have limitations incurring only static observed 
data and assuming perfect rational individuals (Malawska and Topping, 2016). Different models have 
been developed to facilitate the implementation of behavior factors in decision-making. For example, 
Kangur et al. (2017) argue that the Consumat model “closes the loop” by feed forwarding aggregated 
population behavior of farmers towards the decisional context of individual agents at the next 
moment in time. In other words, the Consumat model allows farmers to switch between cognitive 
processes when they experience (un)certainty and (dis)satisfaction, and in this way, facilitates formal 
modeling (Kangur et al., 2017).   

To gather all the necessary data to run the model, we use the inputs from FARMDYN. FARMDYN is a 
dynamic single farm model and has been developed at the University of Bonn (Britz et al, 2014; Britz 
et al., 2016). With FARMDYN users can simulate economically optimal production and investment 
decisions in detail at the individual farm level taking into account restrictions related to feeding, 
fertilization, biophysical and environmental constraints, and farm endowment constraints (Britz et al, 
2016). The optimization in FARMDYN is a mixed-integer programming problem, meaning that the 
variables in the model are a mixture of discrete and non-discrete variables.  

Gross margin is calculated for all available crops in FARMDYN although it’s likely that flower strips will 
be introduced in more extensive crops. In the case of the use of flower strips, the revenues are 
increased with the subsidy for flower strips relative to the size of the flower strip. Based on the gross 
margins data generated by FARMDYN, we create a database containing all possible land allocations 
and related gross margins to run the model. This is represented in the left box in Figure 1, and the 
process is further explained in the next section. In each run, farmers decide on the allocation of flower 
strips in their plots. The model updates the landscape composition every run via the Reilly index. The 
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model uses this information as input to determine the risk of pest threats based on this index for the 
pest regulation dynamics. This is represented in the right box in Figure 1. 

  
Figure 1. Conceptual framework for the CoESM (Collective Ecosystem Services Management) model. Based on Pacilly et al. 

2019. Dark colored arrows represent model processes, and white arrows represent variables and frameworks used as input. 

Interaction between agents 

Following the Consumat approach (Jager et al., 2001; Janssen and Jager, 2001), when the farmer has 
experienced high-income satisfaction and a low level of uncertainty, the behavioral approach is to 
continue with the same strategy as the previous season and choose for “repetition”. On the other 
hand, when the farmer has high-income satisfaction but experiences positive levels of uncertainty, 
the farmer will seek for information in the nearby neighborhood and choose for “imitation” of the 
majority decision of the adjacent farmers with strong links. In circumstances where the farmer 
experiences both high uncertainty and low-income satisfaction, the farmer is encouraged to seek for 
information from a more extensive network of peers and to have chosen for “social comparison”, 
which intake a broader reference of farmers to imitate their decision. Finally, a combination of a low 
level of uncertainty and low-income satisfaction triggers the farmer’s individual “optimization” 
process at the farm level without considering the decisions of other farmers (Duinen et al. 2016). 
Figure 2 illustrates this process.  

Furthermore, when the farmer strategy is to imitate or social comparison, we apply a farmer-nature 
oriented likelihood to adopt or not flower strips at the farm level. The likelihood of adoption is 
expressed in terms of a probability as very likely (0.9), likely (0.7), moderate (0.5), unlikely (0.3), very 
unlikely (0.1) and determined by farmers’ characteristics. 
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Figure 2. Illustration of assume farmers decision making following the Consumat approach (Jager et al., 2001; Janssen and 

Jager, 2001). 

Workshop with experts 

Our conceptual model has been discussed in a workshop with experts and received good feedback on 
how the available data is used and assumptions of farmers interaction. We gather a group of relevant 
policy actors and research advisors from the province of Flevoland and the ministry of agriculture. The 
objective of the workshop was to present our project to experts and ask input on the used model 
assumptions and parameters. Furthermore, the outcomes of this session will be used in the follow-up 
participative workshop with farmers (collective). During this workshop we proposed questions to the 
audience of experts in order to verify, prioritize and check underlying assumptions and parameters of 
the model. For this we will make use of participative methods to create interaction and get input in a 
structured way. In the coming year we will focus on redefining the model and include expert 
recommendations in the assumptions.  

FarmAgriPoliS 

As a methodological approach agent-based participatory modeling (Guyot and Honiden 2006) is used. 
In this approach, agent-based models are used to provide a context-specific environment and 
participants become part of the agent-based simulations. FarmAgriPoliS (Appel and Balmann 2019), 
derived from the ABM AgriPoliS (Happe, Kellermann, and Balmann 2006), provides participants with 
a software-based environment of a simulated agricultural region. Within FarmAgriPoliS, one farm is 
managed by a human participant. Their decisions include investments, renting land, off-farm activities 
and farm exits. The decisions will be made on the one hand against the background of regional 
conditions, prices and policy uncertainty, and the behavior of competing farms in the region on the 
other hand. The participant is assumed to manage this farm and to compete with computer-simulated 
optimizing farm agents that derive their decisions from mixed-integer short-term profit maximization 
(Appel et al. 2018). Thus, experiments with FarmAgriPoliS provide insights into how human 
participants behave in these competitive situations compared to computerized optimizing agents as 
used in AgriPoliS. For Task 4.3 FarmAgriPoliS will be extended to allow participants to decide on the 
participation in collective AES for a specific case study in Germany. The experiments with 
FarmAgriPoliS will provide insights on how the fact that the payment is dependent on the participation 

https://paperpile.com/c/cPgipi/lIsU
https://paperpile.com/c/cPgipi/4dVC
https://paperpile.com/c/cPgipi/mNAc
https://paperpile.com/c/cPgipi/gVZQ
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of other farms in the region and the overall framing of collective AES (neutral, economically or 
ecologically motivated) influences the farmers’ willingness to participate in collective AES. 

During an experiment with FarmAgriPoliS, participants have the option to participate in AES by using 
part of their pasture extensively for five years. Depending on the scenario they receive either a fixed 
or collective payment. Collective payment means that the more farms, the better the effect of the 
environmental measure, the higher the payment (but same expectation value as fixed payment). A 
further differentiation is done by different formulations of the offered AES: neutral formulation, 
ecological and economic motivation (see table 1). 

Table 1: Scenarios planned for the experiments with FarmAgriPoliS 

Scenario Payment Framing/ Motivation 

1 (Benchmark) Fixed Neutral 

2 Fixed Economic 

3 Fixed Ecologic 

4 Collective Neutral 

5 Collective Economic 

6 Collective Ecologic 

It is planned to organize up to ten sessions with max. 8 participants in Germany. The participants 
should have practical experiences in farm management. The experiment will be supplemented by a 
questionnaire. In addition to some general figures (age, gender, GDMS, risk preference etc.), 
participants are asked for their willingness to participate in collaborative AES before and after the 
experiment. 

3.3. Vision/Long-term perspective  

There is an urgent need to have insight into the contribution of the action perspective/business 
models at the farm and plot level to the landscape/regional level and vice versa. What are the 
collective benefits, incentives and governance from collaborative management of ecosystems and can 
payments for ecosystem services (PES) contribute by influencing the individual decision of farmers? 
How can regional or landscape level Key Performance Indicators (KPIs) on nature inclusiveness be 
connected to farm and plot level? 

Agent-based models can capture emergent phenomena due to their bottom-up approach. A bottom-
up approach is when the lower (sub) system-level interactions form the higher-level system properties. 
ABMs are both a micro and macro model, which incorporate feedback loops between the two levels 
(Tesfatsion 2003). ABMs like AgriPoliS/FarmAgriPoliS and CoESM therefore bridge the gap between 
individual farm level and sector or regional level (NUTS 3 or 2 depending on the region) and enable to 
address agri-environmental challenges from socio-economic and ecological perspectives. Further, the 
findings of behavioral experiments can be used to further improve behavioral assumptions in models 
such as AgriPoliS and therefore enable analysis of behavioral aspects on individual farm level as well 
as on sector or regional level. 

3.4. Expected project outcome 

By including behavioral aspects on micro-models of biodiversity transitions, we can better 
quantitatively support transitions to nature-inclusive agriculture. The micro-models provide essential 
building blocks to underpin behavior in nature-inclusive business models, and in this way, we are 

https://paperpile.com/c/cPgipi/sosY
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already in a better position to address questions from policy makers. The ambition is to apply the 
insights from the methodology developed for adapting micro-models (such as FARMDYN) aimed at 
biodiversity and behavior directly to current and expected projects (transitions) and thus place a 
consistent, scientific foundation among those projects. 

 

4. PRICE TRANSMISSIONS (TASK 4.4) 

4.1. Basic modeling challenge addressed 

In most of the theoretical and empirical literature on price transmission and market power along food 
chains, the farm sector is assumed to be perfectly competitive (e.g., Sexton and Zhang 2001; Acharya, 
Kinnucan, and Caudill 2011; Assefa et al. 2017; Philippidis and Waschik 2019). However, this 
assumption may be implausible in modern food markets, where farmers are often able to achieve 
some extent of market power through the use of vertical contractual agreements and/or the creation 
of producers’ organization (Sexton 2013; Sheldon 2017; Bonanno, Russo, and Menapace 2018). 
Despite the extensive and rising use of these instruments by raw agricultural commodity suppliers, 
contractual agreements are not adequately represented in traditional New Industrial Organization 
(NEIO) models (Sheldon 2017). As mentioned by Sheldon (2017), the presence of contracts and/or 
producers’ organization may significantly affect price transmission along the food chain, as they 
completely or partly remove the incentives and ability of food processors to exert monopsony power 
towards agricultural suppliers. Therefore, extending traditional NEIO models, such as the conjectural 
variations approach (Appelbaum 1982), by incorporating these new features of agri-food supply 
chains is essential to correctly evaluate the potential effects of different policies or market shocks on 
market and agricultural prices and on farm incomes. 

Our approach can contribute to better quantitative policy analysis in several ways. For example, by 
improving the understanding of price transmission mechanisms along food chains with different forms 
of organization and coordination, it will enable policy makers to obtain a more reliable estimate of the 
potential effects of policy interventions or market-shocks on farm prices and income, which is 
essential to design cost-effective policies to support the agricultural sector. Moreover, it will allow a 
comparison of market outcomes and incomes under different supply-chain organization scenarios, 
therefore enabling policy-makers to understand whether policies that ensure a more balanced 
bargaining position to farmers in the chain may result in better farm incomes. The results from this 
analysis can be particularly of interest considering that supporting farmers in the creation of producers’ 
organizations is one of the actions taken by the European Commission in order to contrast unfair 
business practices in the food chain by strengthening their bargaining position (EC). In addition, as this 
intervention has proven its effectiveness for the fruit and vegetable sectors, the new CAP 2023-2027 
will further extend the support for the creation of producer organizations to all agricultural sectors 
(Foundation Robert Schuman, 2021) 

4.2. Description of the specific approach  

Following Sexton and Zhang (2001) and Assefa et al. (2017), we analyze price transmission along a 
three-stage supply chain where farmers, f, supply agricultural raw commodities to food manufacturers, 
m, which, in turns, sell food products to the retail sector, r, that delivers final products to consumers. 
However, contrary to previous works on market power along food chains (i.e., Sexton and Zhang 2001; 
Weldegebriel 2004; Verreth et al. 2015; Assefa et al. 2017), our theoretical model allows for the 
presence of oligopoly power also at the farm level, which may derive from the use of contractual 
agreements or the creation of producers’ organization.  
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Following the framework by Sexton and Zhang (2001) and Assefa et al. (2017), it can be proven that 
under the assumption of constant marginal costs at all the supply chain levels (cr, cm, and cf 
respectively), the first order conditions from the profit maximization of retailers (r), food 
manufacturers (m), and farmers (f) are the following: 

                                                   𝑃𝑟 (1 −
𝜃𝑟𝑐

𝜀𝑟 ) = 𝑃𝑚 (1 +
𝜃𝑟𝑚

𝛾𝑚 ) + cr                                                                                (1) 

                                                    𝑃𝑚 (1 −
𝜃𝑚𝑟

𝜀𝑚 ) = 𝑃𝑓 (1 +
𝜃𝑚𝑓

𝛾𝑓 )  + cm                                                                      (2)   

                                                                                                   𝑃𝑓 (1 −
𝜃𝑓𝑚

𝜀𝑓 ) =  cf                                                                                     (3)   

Where  𝑃𝑖, 𝜀𝑖𝑎𝑛𝑑  γi represent the final prices, the demand and supply price elasticities for each i є 

(r,m,f) respectively, 𝜃𝑖𝑗= 
𝜕𝑄𝑖

𝜕𝑞𝑖 
𝑞𝑖

𝑄𝑖 is the average conjectural elasticity measuring the extent of agent i’s 

oligopoly powers with respect to the downstream sector for i,j є (r,m,f), where i ≠ j, while 𝜃𝑘𝑙= 
𝜕𝑄𝑙

𝜕𝑞𝑘

𝑞𝑘

𝑄𝑙 

is the conjectural elasticity parameter representing agent k’s oligopsony power vis-à-vis the upstream 
sector l, for k є (r,m) and  l є (m,f).  ,                                                                       

Overall, combining equation (1), (2), and (3), the relationship between retail prices and farm costs can 
be represented as follows: 

 𝑃𝑟 (1 −
𝜃𝑟𝑐

𝜀𝑟 ) (1 −
𝜃𝑚𝑟

𝜀𝑚 ) (1 −
𝜃𝑓𝑚

𝜀𝑓 )                      

             = 𝑐𝑓 (1 +
𝜃𝑚𝑓

𝛾𝑓 ) (1 +
𝜃𝑟𝑚

𝛾𝑚 ) + 𝑐𝑚 (1 +
𝜃𝑟𝑚

𝛾𝑚 ) (1 −
𝜃𝑓𝑚

𝜀𝑓 ) +  𝑐𝑟 (1 −
𝜃𝑚𝑟

𝜀𝑚 )  (1 −
𝜃𝑓𝑚

𝜀𝑓 )   

(4) 

It is important to acknowledge that under the assumption of a perfectly competitive farm sector (i.e., 

𝜃𝑓𝑚 = 0  and 𝑃𝑓 = 𝑐𝑓), equation (4) simplifies to: 

      𝑃𝑟 (1 −
𝜃𝑟𝑐

𝜀𝑟 ) (1 −
𝜃𝑚𝑟

𝜀𝑚 ) =  𝑃𝑓 (1 +
𝜃𝑚𝑓

𝛾𝑓 ) (1 +
𝜃𝑟𝑚

𝛾𝑚 ) + 𝑐𝑚 (1 +
𝜃𝑟𝑚

𝛾𝑚 ) +  𝑐𝑟 (1 −
𝜃𝑚𝑟

𝜀𝑚 )        (5) 

which is equivalent to the price transmission equation obtained by Assefa et al. (2017). 

Assuming that the price, cost and elasticity values at all the supply-chain levels are known, the 
estimated conjectural elasticities values through equation (4) and (5) can be used to compare the 
extent of price transmission along the food supply chain under different assumptions about the farm 
sector market power, thus allowing to evaluate how the presence of coordination tools  at the farm 
level (i.e., contractual agreements, producers’ organization) (4) affect farm prices and profits, 
compared to a situation in which farmers have no such countervailing power (5). 

While price data at different stages of the supply chain are usually widely available (e.g., retail scanner 
data, chambers of commerce data), one challenge that one could face in estimating the conjectural 
elasticities parameters through equation (4) and (5) is to collect data about costs for all the market 
players (i.e., cf, cm, cr) as these are usually not observed by the econometrician. One potential approach 
to overcome this issue is to collect cost data from different data sources, such as, producers’ surveys, 
experts, or other empirical works analyzing the same supply chain. For example, Bouamra-
Mechemache, Jongeneel, and Réquillart (2008) used the marginal costs estimates for the dairy 
industry from Moro, Nardella, and Sckokai (2005) to analyze the effects of a gradual increase in milk 
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quotas on the EU dairy sector. On the other hand, one can also adopt an empirical specification that 
allows to indirectly estimates marginal cost, for example using widely available key inputs costs data 
as in Soregaroli, Sckokai, and Moro (2011), or by adopting some simplifying assumptions that enable 
to estimate them from the estimated price equations parameters as in Verreth et al. (2015). Similarly, 
market power parameters (i.e., conjectural elasticities values) and price elasticities estimated from 
previous empirical works for the supply chains under investigation can be used as input for the IDM 
behavioral equations, or these parameters can be directly estimated depending on data availability. 

Finally, time-series models (e.g., Vector Autoregression Model, Vector Error Correction Model), can 
also be employed to investigate market power and price transmission issues when cost data are not 
available (e.g., Assefa et al. 2017). Even though time-series techniques have been extensively 
employed in empirical analysis as they are relatively easier to implement than NEIO methods, partly 
because of fewer data requirements, they are also often criticized as they lack a microeconomic 
foundation (Digal and Ahmadi–Esfahani 2002; Lloyd 2017; Cavicchioli 2018). On the other hand, 
despite being more difficult to estimate (e.g.., higher data requirements, rising econometric effort 
with the complexity of the marketing chain being analyzed), NEIO models’ findings are more 
conclusive and reliable than those from time-series analysis, as they are rooted in economic theory 
and can be used for policy simulations (Digal and Ahmadi–Esfahani 2002; Lloyd 2017; Cavicchioli 2018).  

4.3. Vision/Long-term perspective  

The main objective of this task is to develop and implement a model of the supply chain mechanisms 
in modern food markets, by accounting for and parametrizing the extent of market power that raw 
agricultural commodities suppliers may obtain through the use of coordination tools, such as, 
contractual agreements and/or producers’ organization. The results from this analysis will allow us to 
understand how different supply chain organizations affect prices and price transmission along the 
food-chain, therefore contributing to better policy analysis. The estimated parameters (i.e., 
conjectural and/or price transmission elasticities) will be used for improving the parameterization of 
large-scale models (i.e. CAPRI and/or MAGNET), where the issue of farmers’ countervailing power has 
still limited representation. The general idea is the following: 

a) change the equations in the market model (i.e. CAPRI/MAGNET); 

b) obtain different changes in farm-level prices under different assumptions about market 

structure (including the presence of contracts/producer organizations); 

c) use the different price levels to simulate the impact on farm income (and potentially on other 

target variables, such as environmental indicators) in the IDM models (IFM-CAP). 

4.4. Expected project outcome 

Changes in the competitive environment that characterizes agri-food industries, due for example to 
the development of vertical coordination tools, such as contracts between the food-processing and 
agricultural sectors, may reduce the predictive power of current model platforms, where there is only 
little representation of regional value chains and of the presence of bargaining power also from the 
agricultural sector. This work will contribute to integrate these features of modern agri-food markets 
into the classical NEIO approach, where the agricultural sector is usually assumed to be perfectly 
competitive (Sheldon 2017; Bonanno, Russo, and Menapace 2018), and to develop specific IDMs for 
the different actors within the supply chain in order to assess how differences in the supply chain 
organization can affect the extent of price transmission, farm prices and income. Improving the 
understanding of such issues is crucial to simulate questions like whether a better market integration 
will lead to similar or better market outcomes and incomes for the agricultural sector, and so, to assess 
the potential impacts of policies which enable a more balanced position of farmers in the chain. The 
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results from this analysis could then be used to improve the corresponding parameters in current 
models and platforms referring to other agri-food chains.  

5. SURROGATE MODELING (TASK 4.5) 

5.1. Basic modelling challenge addressed 

In task 4.5 we aim to develop novel methods to efficiently link complex IDMs that provide a detailed 
representation of farm technology, management, and biophysical processes, with regional level ABM 
that allow capturing interaction among farms, for example on (local) input/output markets (Happe, 
Kellermann, and Balmann 2006) or for knowledge transfer (Berger 2001). Each ABM which has farmers 
as the agents has an IDM model included that determines farmers’ behavior. However, these IDMs 
are typically based on heuristics (Rasch et al. 2017) or smaller optimization models (Appel, 
Ostermeyer-Wiethaup, and Balmann 2016). These IDMs usually provide fewer details compared to 
other existing IDMs, such as “FarmDyn” (W. Britz et al. 2016), currently used for policy analysis. 
Increasing the complexity of IDMs used in ABMs is conceptually possible but computation demands 
limit either the complexity of the IDM or the number of farms and hence the regional coverage of 
ABMs. Currently, despite the relatively simple IDMs, applications of ABMs are typically restricted to a 
regional level. The limited level of details considered in the included IDMs as well as the limited 
regional coverage of ABM constrain the possibilities of ABMs for simulating certain policies. 

One example of such a policy analysis is the simulation of a mandatory reduction in fertilizer use, 
including an assessment of its impacts on crop production and the environment on both farm and 
regional level. To simulate such a scenario, we need an IDM that is capable of modeling detailed 
fertilizer use decisions that differentiate between different crops, capture changes in the production 
mix, technology decisions as well as the environmental impacts on farm level. On the other hand, it is 
important to capture interactions among farms, most importantly on local land markets. Ignoring 
those feedbacks can lead to over/under-estimating the aggregated policy effects on a regional level.   

FarmDyn (Britz et al. 2016) is an IDM model that provides the necessary details on the farm level. 
Previously, it has been used for a wide range of policies on single-farm level targeting the national 
implementations of the Nitrate and Water framework directive (Kuhn et al. 2019; Kuhn et al. 2020), 
the use of renewable energy (Schäfer, Britz, and Kuhn 2017), and addressed GHG abatement costs in 
the context of climate change policies (Lengers, Britz, and Holm-Müller 2014). The advantage for all 
applications was the highly detailed technology and biophysical representation which can be 
simultaneously linked to a number of policy measures. On the other hand, AgriPoliS (Agricultural Policy 
Simulator) (Happe, Kellermann, and Balmann 2006) is an established ABM model that is capable of 
capturing interactions between farms and market feedback. Previously, it was applied to simulate the 
development of regional agricultural structures over time in response to alternative scenarios of 
specific policies, such as biogas policy (Appel, Ostermeyer-Wiethaup, and Balmann 2016) and 
decoupled support (Happe, Kellermann, and Balmann 2006).  

Given the complexity of FarmDyn and the computational time to solve the model, it is not possible to 
directly integrate FarmDyn as the IDM model in AgriPoliS. Therefore in task 4.5, we aim to develop a 
surrogate modeling approach where we approximate the detailed IDM model “FarmDyn” with a deep 
neural network (DNN). The trained DNN should be able to accurately approximate the input and 
output relationships of FarmDyn but with much less computation time. We then aim to use this 
surrogate model as the IDM model in AgriPoliS. In this way, we can run policy simulations such as a 
mandatory reduction in fertilizer that requires high detail in terms of technology representation or 
biophysical processes offered by FarmDyn but also the interaction and market feedback considered 
by AgriPoliS. We aim to provide an example that shows that the advantages of a highly detailed single 
farm-level model can be brought to the regional level through the implementation of an IDM 

https://paperpile.com/c/cPgipi/mNAc
https://paperpile.com/c/cPgipi/mNAc
https://paperpile.com/c/cPgipi/E5HM
https://paperpile.com/c/cPgipi/x3Go
https://paperpile.com/c/cPgipi/DZsv
https://paperpile.com/c/cPgipi/DZsv
https://paperpile.com/c/cPgipi/FXpp
https://paperpile.com/c/cPgipi/FXpp
https://paperpile.com/c/cPgipi/UQxQ+JQMr
https://paperpile.com/c/cPgipi/qcaq
https://paperpile.com/c/cPgipi/5T5v
https://paperpile.com/c/cPgipi/mNAc
https://paperpile.com/c/cPgipi/DZsv
https://paperpile.com/c/cPgipi/mNAc
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surrogate model that is used in an ABM. This approach allows us to go beyond mere aggregation of 
single farms but also to account for structural effects including emerging phenomena from the 
interaction of agents in ABMs. 

5.2. Description of the specific approach  

Our approach links complex IDMs and large-scale ABMs using machine learning models. When 
conducting policy analysis related to agricultural environmental issues, complex IDMs are useful since 
they are highly detailed in terms of technology choices, biophysical relations, and therefore capable 
of providing a wide variety of environmental and economic indicators. However, IDMs are not well 
suited for analyzing economic and environmental impacts beyond single farms or farm types because 
they do not capture the interactions of heterogeneous farms and thus neglect changes in prices or 
other non-monetary aspects in the interactions. In contrast, ABMs are capable of simulating 
interactions and facilitate emerging phenomena, but the complexity of farmers’ decision-making 
process and the number of farms in current ABMs are limited due to the computational constraints.  

Directly adding new functions (more aspects/ greater detail) to the IDM of an existing ABM is possible, 
however, could be computationally inefficient. A complex IDM like FarmDyn can contain a lot of bio-
geographical, economic and environmental information, and farmers face thousands of decisions such 
as investment decisions, production decisions and labor distributions under various economic and 
environmental constraints (Seidel and Britz 2020). When integrating such complex IDMs to large-scale 
ABMs, it becomes very resource demanding thus limits the applicability of such simulation models.  

Using machine learning models as surrogates of complex IDMs can speed up simulations of large-scale 
ABMs when different policy scenarios are designed. At the same time, it allows us to fully utilize the 
advantages of both types of models. To be more specific, the accurate surrogate models of DNNs still 
capture the important details of complex IDMs, and integration of DNNs and ABMs enables us to 
efficiently conduct economic and environmental impact analysis of farm activities and agricultural 
policies from a system perspective.  

Our approach requires the following steps: 

1. As a trial, we first train DNNs only with data generated from FarmDyn without considering its 

linkages with AgriPoliS. This step helps us to gather experiences with data preparation, 

sampling strategies and different architectures of DNNs before the two models are aligned.  

2. At the same time, we will parameterize FarmDyn and AgriPoliS for the chosen research region 

“Rheinisches Revier” (Germany).  

3. We will define the interface between the DNN and AgriPoliS, specifying which inputs AgriPoliS 

provides and which outputs it requires from the DNN. In AgriPoliS, farmers make decisions at 

several stages: competing on the land market, investment decision, production decision, farm 

accounting, and exit decision. The inputs and outputs of the DNN must be clearly defined so 

that the DNN can take the correct inputs and produce the required outputs for AgriPoliS. We 

will adjust FarmDyn and AgripoliS according to the defined interface. This step needs intensive 

collaboration between the modelers from both sides. For example, in the current version of 

FarmDyn, some machines can be invested in fractions. However, in AgriPoliS, the whole 

machine must be invested. Thus, adjustment must be made here so that the results of farm 

accounting from both models are consistent, which matters a lot for farmers’ exit decisions. 

4. We will generate a large dataset from the adjusted FarmDyn and train DNNs of various 

architectures to approximate the input/output relations. One crucial feature of DNNs is that 

they are computationally intensive to train, while they are very efficient to run for providing 

https://paperpile.com/c/cPgipi/qXaQ
https://www.land.nrw/de/tags/rheinisches-revier
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accurate approximations of complex nonlinear input/output relations for prediction once they 

are trained. 

5. We will replace the IDM in AgriPoliS using the well trained DNN. This step requires smooth 

communication between the DNN (written in python) and AgriPoliS (written in C++).  

6. Lastly, when the above steps are accomplished, we will implement the policy scenario of 

mandatory fertilizer reduction in the research region using the integrated model.  

The advantage of this approach is that it combines the strengths of both the farm-level model and the 
ABM without directly integrating them. The efficient surrogate model keeps all important details of 
FarmDyn and replaces the simple DIM in AgriPoliS. The integration of DNN and ABMs enables us to 
efficiently conduct economic and environmental impact analysis of farm activities and agricultural 
policies from a system perspective. 

Despite these advantages several limitations exist. First, DNN can probably not achieve 100% accuracy 
in approximating the detailed farm-level model. For example, some jumpy behavior or rare events in 
crop production derived by the mathematical solver might be difficult for DNN to capture. Thus, we 
must make sure that the outputs we are interested in when conducting policy analysis should achieve 
a satisfying level of accuracy, which is in turn hard to set a strict threshold during evaluation. Second, 
since the updates from the farm-level model are not automatically transferred to the DNN, another 
limitation of this approach is the DNN must be retrained (partially or completely) each time when 
important updates are made in the detailed farm-level model.  

5.3. Vision/Long-term perspective  

Currently, ABMs hardly go beyond regional coverage. Hence, they primarily need to be used as 
complementary tools to large-scale EU or global models. The work in task 4.5 described above does 
not aim to go beyond a regional level, rather focusing on improving the link between complex IDMs 
and regional ABMs. However, the general idea of using surrogate models to link models across scales 
and using them for upscaling could also be used to go beyond the regional scale up to the national/EU 
scale. One vision in this respect would be to build a surrogate model of a regional ABM and then link 
those regional surrogate models together forming a new model at a national/EU scale. In such a model 
it would then be possible to consider further feedback mechanisms endogenously e.g. market price 
effects.  

While conceptually such a linkage might be possible, practical obstacles need to be overcome, for 
example in terms of the massive data requirements necessary to adopt a regional ABM (or a surrogate 
model of such an ABM) to a specific region. Also building a surrogate model of a dynamic system such 
as an ABM might be more complex compared to the IDM model considered here.  

5.4. Expected project outcome 

Within this project, we aim to provide a proof of concept that building a surrogate model of a complex 
IDM is possible and that such a surrogate model can be used in an existing ABM. Further, at the end 
of the project, we expect to have an integrated model of a DNN and AgriPoliS together functioning as 
a modeling system to facilitate efficient simulation of complex agricultural economic and 
environmental scenarios capturing detailed input use on farm level, interactions among farmers, and 
market feedback. This integrated model is parameterized for arable farms in the region “Rheinisches 
Revier” (Germany) and can be used to analyze certain policy scenarios (e.g. mandatory fertilizer 
reduction) and their impacts on the regional environment and agricultural structural change.  

 

https://www.land.nrw/de/tags/rheinisches-revier
https://www.land.nrw/de/tags/rheinisches-revier
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The expected output can function as a complete modeling system since it allows certain policy 
scenarios in an existing region in Germany. However, it functions on a relatively small scale with only 
arable farms involved, with limited possible policy scenarios. Thus, the outcome of this task should 
also be an intermediate achievement, which can be further developed. In the future, the integrated 
model can be extended with more farming branches and for large scale (e.g. EU level) as outlined in 
the previous section.        

6. CONCLUSIONS 
This deliverable described modeling challenges for consistently linking IDMs with landscape scale and 
EU/global market-level models and suggested approaches to address these challenges. It is specifically 
concerned with areas where the interaction between individual farms matters. For the corresponding 
approaches it is then presented to what extent they can be integrated in larger scale (EU/global) 
models or where a complementary use is envisioned.    

The approaches considered here comprise (task 4.2) The estimation of farm exit rates exemplified for 
Germany and Norway aiming to be the basis for integrating farm structural change into representative 
farm-level or equilibrium models: (task 4.3) The investigation of farmers’ preferences and related 
behavior regarding the participation in collective environmental schemes through computer and 
group experiments; (task 4.4) the estimation of conjectural elasticities that capture market power 
along the supply chain and specifically (and for the first time) the power of farmers arising from 
contractual agreements or the formation of producer organizations. The conjectural elasticities can 
be incorporated in equilibrium models for a more realistic representation of price transmission along 
the supply chain; (task 4.5) The training of machine-learning-based surrogate models that address the 
computational challenges arising when trying to incorporate detailed farm-level models into 
representative larger scale models, here specifically into agent-based models with interaction 
between individual farms on the land market. 

The methodological approaches all contribute to the literature dealing with “scaling” of analytical 
tools to analyze developments of agricultural systems and of the policies impacting on them. They are 
not only about “up-” scaling of IDMs as they rather target the consistent behavior of models at 
different scales allowing to deal with bottom-up, top-down, or integrated scenarios to be analyzed. 
The approaches discussed can generally be subsumed under what Ewert et al. (2011) call 
“manipulation of models” and ultimate visions include the reparameterization of models (task 4.2 and 
4.4) and the use of “response functions” at larger scales (task 4.5). Performing experiments to better 
specify individual behavior in landscape-scale models (task 4.3) may also, in the end, be seen as a 
“reparameterization” of models, but it goes beyond what Ewert et al. (2011) had in mind by offering 
an empirical approach to directly address emergent phenomena from the interaction of individual 
agents. 

The analysis of the type of scenarios currently foreseen in MIND STEP to show the functionality of the 
toolbox may also benefit in the long run from the development of the tools described in here. For 
example, reducing chemical inputs by 50% will have strong impacts on the relative profitability of 
farming systems and thereby on farm structural change. The farm exit model may provide a consistent 
reflection of this scenario-induced outcome by changing the population (weights) of the IDM models 
used. A direct integration of detailed farm models in a regional agent-based model may deepen the 
structural change analysis by simulating land market outcomes in spatially differentiated policy 
settings (higher reductions in ‘red areas’) and the related development of environmental indicators 
tied to local conditions. 
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