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EXECUTIVE SUMMARY 
The MIND STEP model toolbox will link and combine a variety of models designed for specific uses. 
Because of the heterogeneity of tools and applications within MIND STEP, validation requires a model-
specific approach. These individual efforts represent an integral part of the overall evaluation of the 
MIND STEP toolbox additional techniques or their repeated application might be required given the 
level of model integration. The present deliverable reports on options for quality management and 
model evaluation based on a comprehensive literature review. Beyond traditional criteria as data 
quality and comprehensive documentation, quality management of research software features also 
aspects of the design of models (e.g., modularity) and the maintenance of models (in terms of 
providing sustainable use). Similarly, confronting model outputs with observational evidence, 
historically often the only and still an important tool for validation, needs to be accompanied by 
additional validation techniques, in particular, efficient interaction between modelers and 
stakeholders. This deliverable also presents the common framework and indicator system for model 
validation for the MIND STEP toolbox. The framework shall help to assess model quality and validity 
by detailing, e.g., the purpose and underlying concepts of the model, model evaluation (including 
verification, validation, and calibration) as well as transparent model documentation and resource 
accessibility (e.g., of data and/or source code). 
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1. INTRODUCTION 
The MIND STEP model toolbox will consist and combine a variety of models, each designed for a 
specific use. The underlying modeling approaches stretch from direct empirical investigations to agent-
based systems. In each and every case, model validation is an important task to assess the usefulness 
of a model and ultimately its credibility (Baldos & Hertel, 2013; Rykiel, 1996), which is a cornerstone 
for evidence based policy assessment (Panhans & Singleton, 2017). Because of the large variety of tools 
and their tasks, validation generally requires a model-specific approach (Barlas & Carpenter, 1990) but, 
striving for an (partially) integrated framework of the „model toolbox”, we need to account for this 
concept and provide a more comprehensive approach to validation.  
The aim of Task 6.1 is to support validation across the work packages in MIND STEP and to provide a 
guideline and identification of indicators to assess model validity on different scales: The common 
framework and indicator system for model validation. This framework aims to ensure, e.g., that a) tools 
are suitable to investigate relevant policy measures, b) cover key indicators of interest, and c) provide 
valid results. Based on different concepts and perspective on model validation, existing guidelines in 
the literature, as well as experience and results of the project partners, this task developed a checklist 
with quality criteria and indicators for model validation, which will serve as a mean of quality 
management within MIND STEP.  
The focus of this report is on simulation models as those build the core of the MIND STEP toolbox. 
Furthermore, simulation models in general and agent-based simulations in particular are increasingly 
used in impact assessment of agricultural policies (Fresco et al., 2021; Huber et al., 2018; Kremmydas 
et al., 2018; Reidsma et al., 2018) but there are no accepted standards for the validation of complex 
simulation models Jakeman et al. (2006); Kaye-Blake et al. (2014); Marks (2013). The use of any model 
to support any type of decision making requires models and their results to be credible (Rykiel, 1996). 
Model evaluation, including model validation and verification as well as the effective communication 
between the modeling team and the stakeholders, is the foundation to establish credibility (Bharathy 
& Silverman, 2013; Schlesinger, 1979) especially if counter intuitive results are generated (Smajgl et 
al., 2011). If computer modeling can exploit its potential, it could support better decision making 
(Bankes, 1993) but often model evaluation is insufficient (Janssen & Van Ittersum, 2007). For instance, 
validation, often does not follow formal, objective, and quantitative procedures (Barlas & Carpenter, 
1990; Schwanitz, 2013) or, as van Vliet et al. (2016) found by reviewing studies on land change models, 
authors often do not report any validation at all.  
Because of this and the importance for model evaluation to establish credibility, there is a clear need 
for more attention towards validation in practice (Beisbart, 2019). Bousquet and Le Page (2004) argue 
there are two strategies to enhance the credibility of (simulation) models: (a) Provide a comprehensive 
and transparent presentations of the structure and foundation (including underlying theories, 
concepts, and assumptions) of the model. (b) Compare the results of the simulation with other (types 
of) models or observational data. Roughly speaking, the first is the concern of quality management 
while the second is the concern of model validation. Over the last couple of years, there are increasing 
efforts in formalizing quality management and validation of simulation models, also in agricultural 
economics (Anzt et al., 2021; Bert et al., 2014; Britz et al., 2021; Fagiolo et al., 2019; Reidsma et al., 
2018; Schwanitz, 2013). The present deliverable provides a report on options for quality management 
and validation for the MIND STEP project based on a comprehensive review of this literature.  
The deliverable is structured as follows: The next section provides a brief overview of selected models 
used and further developed in the MIND STEP project to highlight the variety of approaches and 
potential applications. Chapter 3 discusses aspects of quality management with particular focus on the 
validation of simulation models and chapter 4 introduces concepts and approaches of model 
validation. Chapter 5 presents the common framework and indicator system for model validation 
within the MIND STEP project.   
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2. MODELS  
This section provides a brief overview of selected models that will be used or developed within the 
project to highlight the variability of models that motivate the discussion of the (alternative) validation 
approaches and techniques in later sections. The models are ordered alphabetically. 

2.1. AgriPoliS (Agricultural Policy Simulator)  

AgriPoliS is a spatially explicit and dynamic agent-based model that is able to simulate the evolution of 
agricultural structures over time. It is mainly used to study the influence of policies on agricultural 
structural change (Happe et al., 2006). AgriPoliS can be calibrated with empirically collected data for 
real regions and contribute to a better understanding of past and future structural change. In AgriPoliS, 
individual farm agents are assumed to maximize profits or household income by use of a mixed-integer 
programing model, and are able to react to price or policy changes by renting or leasing land, changing 
their production system, or choosing to quit agriculture. These individual farm agents compete for land 
with their neighbors by interacting on the land market, which is implemented as a repeated auction.  

2.2. AGRISPACE  

AGRISPACE is a research activity to build a state-of-the-art agricultural sector model for Norway in 
order to analyze impacts of market and policy changes on the agricultural sector and farm structural 
change in Norway. It is a joint initiative of the Norwegian Institute of Bioeconomy Research in Oslo and 
the Institute for Food and Resource Economics of the University Bonn, drawing on a long-standing 
research co-operation between the two institutions. The development of the model was part of the 
AGRISPACE project (1/2014-10/2017), financed by the Norwegian Research Council, and involving 
several Norwegian and international partners. AGRISPACE consistently combines production, factor 
use and exit decisions for all individual farms in Norway with a regionalized partial equilibrium model. 
As such AGRISPACE also acts as a test-bed for the integration of IDM data and models in current models 
like MAGNET (see 2.6). 

2.1. CAPRI  

The Common Agricultural Policy Regional Impact (CAPRI) model is a global partial equilibrium model 
for the agricultural sector. It has been designed for ex-ante impact assessment of agricultural, 
environmental and trade policies. It iteratively links a supply module, focusing on the EU, Norway, 
Turkey and Western Balkans, with a global multi-commodity market module. The CAPRI model can be 
used for policy anticipation and formulation. It allows economic and environmental analysis of 
different policy scenarios regarding reforms of the Common Agricultural Policy (CAP). It is able to 
perform a regional level analysis of specific Common Market Organisations (e.g. sugar, dairies), trade 
of agricultural goods with the rest of the world (e.g. WTO proposals), environmental policies (e.g. 
greening, climate action and water) and different subsidy schemes in Europe (e.g. partial decoupling 
of agricultural subsidies). The model is frequently used in various  Commission services (such as DG 
AGRI, DG ENV, DG CLIMA, Eurostat and the JRC) reporting on agricultural, environmental and climate 
policies at the regional dimension in the EU.  

2.2. Econometric Models 

To complement the simulation models, several econometric models will be used or developed within 
MIND STEP, including innovative micro-econometric production choice models for empirically 
analyzing farmers’ crop management choices (WP3) and models that provide estimates of market 
power parameters or price transmission elasticity (WP4). Using Dutch farm accountancy data, a Data 
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envelopment analysis (DEA) investigates to what extent can circular dairy farms improve its 
greenhouse gas (GHG) cycle and nutrient cycle as well as its productivity simultaneously by reallocating 
land between crop production and livestock grazing on the farm. The DEA model, an extension of the 
model by Ang and Kerstens (2016), will provide empirical support for the FarmDyn model (see below). 
Using the dual approach allows to compute the shadow price of GHG emissions, that is, the farmers’ 
willingness to pay to give up one unit of GHG emission. The shadow price can be used to calibrate the 
objective function of the FarmDyn model.  

2.3. FarmDyn  

FARMDYN as quite detailed bio-economic farm model provides a flexible, modular template to 
simulate farms with different branches (dairy, suckler cows, beef fattening, pig fattening, piglet 
production, arable farming, biogas plants). The model is parameterized for regional conditions in 
Germany and The Netherlands using highly detailed farm planning data in combination with farm 
structural statistics. The model is realized in GAMS, solved with the industry MIP solver CPLEX, linked 
to a Graphical User Interface realized in GGIG and hosted on a Software Versioning System. Design of 
experiments, building on R routines directly called from GAMS, can be used in combination with farm 
structural statistics to systematically simulate different farm realizations (assets, farm branches) and 
boundary conditions such as input and output prices or emissions ceilings using a computing server to 
solve several instances in parallel.  

2.4. GLOBIOM  

IIASA’s Global Biosphere Management Model (GLOBIOM) is used to analyze the competition for land 
use between agriculture, forestry, and bioenergy, which are the main land-based production sectors. 
As such, the model can provide scientists and policymakers with the means to assess, on a global basis, 
the rational production of food, forest fiber, and bioenergy, all of which contribute to human welfare. 
GLOBIOM has been developed and used by IIASA since the late 2000s. The partial-equilibrium model 
represents various land use-based activities, including agriculture, forestry and bioenergy sectors. The 
model is built following a bottom-up setting based on detailed grid-cell information, providing the 
biophysical and technical cost information. This detailed structure allows a rich set of environmental 
parameters to be taken into account. Its spatial equilibrium modelling approach represents bilateral 
trade based on cost competitiveness. The model was initially developed for impact assessment of 
climate change mitigation policies in land-based sectors, including biofuels, and nowadays is also 
increasingly being implemented for agricultural and timber markets foresight, and economic impact 
analysis of climate change and adaptation, and a wide range of sustainable development goals.  

2.5. MAGNET  

MAGNET is a recursive dynamic, multi-region, multi-sector Computable General Equilibrium model 
used to analyze policy scenarios on agricultural economics, bioeconomy, food security, climate change 
and international trade. It was developed by the Wageningen Economic Research (WECR) in 
cooperation with JRC and the Thunen Institute. MAGNET is calibrated to the GTAP database and 
describes production, use and international trade flows of goods and services and primary factor use 
differentiated by sectors. The database distinguishes 141 countries or regions (including all EU member 
states), 65 sectors (plus several optional MAGNET-specific extensions) and 8 factors (e.g., labor, capital, 
land). A distinguishing feature of the model is its modular design which allows tailoring its structure to 
the research question. The GTAP model forms the MAGNET core while users choose among several 
extensions: different nesting structures or assumptions about factor markets, different agricultural-, 
trade- and biofuels-policy mechanisms and different assumptions relating to investment allocation. 
Other modules deal with the representation of the Common Agricultural Policies (including rural 
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development), land and labor supply, production quotas, tariff rate quotas, biofuels directive, 
bioenergy policies, water in agriculture, GHG emissions (marginal abatement curves) and tracking of 
Sustainable Development Goals (SDGs) to name a few. MAGNET can be used in policy formulation 
through ex-ante policy analysis. The model assesses policy scenarios related to agriculture and agri-
food trade while taking into account other fields directly connected with agri-food production such-as 
bioeconomy (bioenergy, biofuel, biobased chemicals), sustainable use of resources (land and water), 
food security and nutrition (developing and developed countries) and climate change, but also 
feedback with the wider (non-agricultural) economy. Policy scenarios are compared against a baseline 
including the most recent macroeconomic (GDP and population) and agricultural (yields, land 
productivity, EU agricultural mid-term outlook) exogenous drivers. Focusing on ex-ante policy analysis, 
the model can be used to support policy formulation or to provide valuable information to policy 
makers in front of exogenous shocks.  

2.6. IFM-CAP  

IFM-CAP is a micro model designed for the ex-ante economic and environmental assessment of the 
medium-term adaptation of individual farmers to policy and market changes. IFM-CAP was developed 
by JRC in close cooperation with DG AGRI starting from 2013 for the purpose to improve the quality of 
agricultural policy assessment upon existing aggregate models and to assess distributional effects of 
policies over the EU farm population. Rather than providing forecasts or projections, the model aims 
to generate policy scenarios, or what if analyses. It simulates how a given scenario, for example, a 
change in prices, farm resources or environmental and agricultural policy, might affect a set of 
performance indicators important to decision makers and stakeholders. IFM-CAP is a comparative 
static positive mathematical programming model applied to each individual farm from the Farm 
Accountancy Data Network (FADN) to guarantee the highest possible representativeness of the EU 
agricultural sector. Farmers are assumed maximizing their expected utility at given yields, product 
prices and CAP subsidies, subject to resource endowments and policy constraints. The main strengths 
and capabilities of the model include the possibility to conduct a flexible assessment of a wide range 
of farm-specific policies and to capture the full heterogeneity of EU commercial farms in terms of policy 
representation and impacts (e.g. small versus big farms). 

3. QUALITY MANAGEMENT 
Quality management provides the tools to assess, monitor, and control the degree of product and/or 
process quality indicated by a set of desired characteristics (Balci, 2003, 2004). With respect to the 
MIND STEP project, this concerns mainly the quality of (simulation) models as well as data, where 
validity of both is a prime quality criteria and the focus of this report. The following subsections discuss 
the important aspects of data validity and good practice before a more detailed presentation of model 
validation is provided in chapter 4.  

3.1. Data quality  

Data validity is often not considered to be part of model validation (Sargent, 2013), but certainly a 
precondition for it and not only an issue in statistical validity (Anselin, 1988). Incomplete data or 
inconsistency in datasets can invalidate the results of any model and impair model credibility (Macal 
& North, 2005). Data validity certifies that the data meet a specified standard, i.e., quality assurance 
and quality control (Rykiel, 1996). Therefore, the development and use of adequate procedures is 
required for (i) collecting and maintaining data, (ii) testing the collected data, and (iii) screening the 
data for outliers (Sargent, 2013).  
As models often rely on external data sources, some of these procedures are external to the MIND 
STEP project. For instance, a number of models (e.g., IFM-CAP and Farmdyn, see section 2) use the 
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Farm Accountancy Data Network (FADN), i.e., validated microeconomic data based on harmonized 
bookkeeping principles that allow to compare economic indicators across European regions. In 
general, criteria and procedures to ensure data quality for official statistics are typically provided by 
the European Commission and individual member states. For instance, the statistical office of the 
European Union, Eurostat, assesses data quality based on defined indicators including relevance, 
accuracy, timeliness and punctuality, accessibility and clarity as well as comparability and coherence 
along three aspects: (1) the characteristics of the statistical product (2) the perception of the statistical 
product by the user and (3) characteristics of the statistical production process (Bergdahl et al., 2007). 
The Federal Statistical Office in Germany, Destatis, just recently published a Handbook on data quality 
differentiating five levels of quality management that define (from level to level increasingly specific) 
requirements on data quality (Destatis, 2021).  
Data acquisition and processing within a project can be time consuming and combining data from 
different data sources can cause additional issues, e.g., inconsistency in references (of data fields) or 
erroneous conversion of data to common units (Macal & North, 2005). Therefore, MIND STEP also 
develops and uses procedures for data acquisition, processing, and transfer. This is done mainly in 
work package 2 (Data requirements for indicators on European policies related to agriculture and data 
management) and work package 7 (ICT platform for MIND STEP and the MIND STEP model toolbox). 
For instance, Deliverable D2.2 provides a comprehensive handbook to build a conceptual framework 
for database interfaces to integrate data from multiple heterogeneous sources at flexible geographic 
and regional scales and to support analytical reporting as well as to allow structured and/or ad hoc 
queries (Gocht et al., 2021). Deliverable D7.6 describes the initial prototype of the MIND STEP data 
and download services to deliver and visualize the various geo-spatial results produced by the MIND 
STEP modeling teams to facilitate the transfer with stakeholders, the research community, and the 
public (McCallum & Subash, 2021). 

3.2. Good practice and sustainable research software 

As Jakeman et al. (2006) emphasize, good practice in the development of complex (simulation) models 
is crucial, because of the inherent difficulties in validating them. Deliverable 3.1 ”Specification of model 
requirements - Protocols for code and data” details some aspects of quality management within MIND 
STEP, including coding conventions and testing strategies (Mueller et al., 2021). The first concerns 
syntactic and code commenting guidelines such that the model code is understandable and 
maintainable independent of the original developer. In this respect, parameters, variables as well as 
dependencies can be described by commenting within the code. Mueller et al. (2021) further state, 
the implementation and documentation of testing strategies is crucial in multi-partner projects where 
linkages between models exist or several partners develop or work with the same model. As it will be 
discussed in section 4, testing shall ensure the correctness of the (computational) model and the 
credibility of the results. Mueller et al. (2021) propose that tests are documented, follow a protocol, 
and are periodically re-evaluated to ensure that new components of the model are included. An 
exemplary testing strategy (for the model FarmDyn) is also presented in Mueller et al. (2021). 

Janssen and Van Ittersum (2007) define good practice based on a literature review focusing on bio-
economic farm models for impact assessment. The authors state that a clear definition for the use of 
the model needs to be given. Furthermore, the model input both in terms of data and assumptions, 
e.g., the considered (farm) activities, needs to be described and model evaluation should be explicitly 
and comprehensively presented. Finally, model constraints should be mentioned and discussed. 
Because Janssen and Van Ittersum (2007) argue that transferability, i.e., model application to different 
regions and farm structures is an important feature, they call for a generic and modular structure of 
farm models to be developed. Reidsma et al. (2018) revisit the topic and review the use and the 
development of farm models for policy impact analysis. The authors conclude that, even though some 
progress has been made with respect to the criteria formulated by Janssen and Van Ittersum (2007), 
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this progress is limited especially regarding model evaluation and the development of generic, modular 
and easily transferable models, which limits the use of model results in policy-making and the re-use 
of improvements in modeling. Regarding the first issue, Reidsma et al. (2018) reinforce the call for 
thorough and consistent model evaluation and model comparison, with increased attention for model 
sensitivity and uncertainty. They also argue that the organization of a network of modelers as well as 
synthesizing research evidence into systematic reviews as an institutional element can support 
efficient communication at the science-policy-interfaces for agricultural systems. The authors also 
highlight that improved and timely data (collection) is crucial and advocate for stronger science-policy 
interaction, moving from a research-driven to a user-driven approach. Similarly, Eker et al. (2018) 
argue that empirical data most often play the lead role in model evaluation but qualitative and 
participatory approaches can enhance the usefulness and public reliability of models and their results. 

As documentation and model quality are eminently important, Anzt et al. (2021) generally define 
mandatory criteria for transparency and quality of research software: 

1. Source code should be publicly available. 
2. Version control with meaningful commit messages and linked to an issue tracker needs to be 

used. 
3. The license under which the software is distributed must be defined. 
4. Documentation of the software needs to be publicly available comprising both user 

documentation (requirements, installation, getting started, user manual, release notes) and 
developer documentation. 

5. Dependencies on libraries and technologies must be defined. 

Additional criteria, according to Anzt et al. (2021), include: the availability of examples (comprising 
input data and reference results), interoperability (APIs / common and open data formats for input 
and output), and mechanisms for extensibility (modularity). 

With respect to modularity, Britz et al. (2021) define requirements for the functionality and 
implementation of modular (bio-economic farm) models including necessary model features, model 
design and shared development. The authors define modularity as the option to replace, activate, or 
omit blocks of code holding equations and related variables, depending on the application of the 
model. The advantage is that this structural feature of models can ease their application by restricting 
data preparation, parameterization, model solving, and reporting to the actual use case, e.g., only the 
relevant farm branches, farming systems or policies are considered (Britz et al., 2021). With respect to 
the design of such models, the authors build on concepts from software engineering including „low 
coupling and high cohesion”, where coupling refers to low dependencies between modules and 
cohesion refers to a strong dependence between elements within a module (Stevens et al., 1974). Britz 
et al. (2021) list a number of implications and advantages with respect to quality management: (1) 
Transparency: the model can be reviewed module by module, facilitating overall comprehension and 
quality control. (2) Maintainability: Code and database updates of a module do not affect other 
modules. (3) Extensibility: Modules can be extended or added to the core model without affecting 
others. (4) Distributed development: Modelers focus on specific modules which eases coordination of 
coding efforts. 

One issue that might hamper the development of modular models includes the requirement of a clear 
strategy for model maintenance and distribution, including the use of version control, testing 
strategies, and documentation as part of quality management (Britz et al., 2021). On the one hand, 
models are often (and necessarily) developed for a specific use and thus rather a case study (Bert et 
al., 2014; Troost, 2015). Despite the fact that computational analysis, simulation and software are 
increasingly important in research, there are considerable inefficiencies because models are often not 
used or developed beyond a prototype stage (Appel & Loewe, 2021; Britz et al., 2021). On the other 
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hand, researchers tend to use models they have experience with, and rarely switch to competing 
model frameworks even if those offer some advantages or are more adequate given the study 
objectives (Addor & Melsen, 2019). In this respect, Appel and Loewe (2021) call for changes in the way 
research software is developed and maintained, including funding, structural and infrastructural 
support (e.g., project management), and legal considerations (e.g., licensing). 

While most of the presented aspects of quality management will be reconsidered in section 5, the 
following section discusses model validation in more detail. 

 

4. MODEL VALIDATION 
Unfortunately, there is no standard theory or framework for model validation or verification (Kleijnen, 
1995). In fact, a number of (partly) contradictory definitions exists on central concepts1. For instance, 
Oreskes et al. (1994) argue in their influential paper that the use of the terms validation and verification 
reflects “at best confirmation” and, as we will see below, both terms can bear different meanings or 
are used interchangeably. Some of the confusion in the literature reflects philosophical differences or 
perspectives among disciplines. As Eker et al. (2018) points out: “In decision sciences, validation usually 
implies establishing confidence in the model by judging its usefulness with respect to some purpose. 
In environmental modelling, validity is often used to indicate that model predictions are consistent 
with observational data, or that the model is an accurate representation of physical reality, or both.” 
In any case, the need for clear definitions within a given context to establish a common understanding 
of the used terminology is obvious (Segerson, 2015). This is the aim of present section. 

4.1. Verification and validation  

Typically, validation represents a comprehensive evaluation of the model or the modeling process, 
while verification is commonly defined in a narrower, technical sense. By verification we determine 
that a simulation model performs as it was intended by the developer(s) (Kleijnen, 1995; Sargent, 
2013). This includes documentation, program code debugging, and model testing to assess whether 
errors or inconsistencies exits within the model (Balci, 1998; Rand & Rust, 2011). In other words, 
verification ensures the correct implementation of a conceptual model2 into a computer program 
similar to making sure that the arithmetic is correct within a mathematical model.  
The ultimate objective of model validation is to establish or to increase model credibility (McCarl, 1984) 
by assessing the level of confidence that can be placed in the model and its results (Bert et al., 2014; 
Sargent, 2013). In this context, credibility is a sufficient degree of belief in the validity of a model to 
justify its use for research and decision making (Rykiel, 1996). For instance, showing that a simulation 
outcome has a certain level of accuracy (with respect to a given evaluation criteria) can induce this 
credibility (Beisbart, 2019). Accuracy can be measured objectively, which is commonly conducted 
within model testing (e.g., determining the deviation of the simulation result to a target level as 
discussed in section 4.2). In contrast, credibility is a subjective qualitative judgment, and cannot be 
quantified (Rykiel, 1996). In fact, what is “credible” as well as the specific procedure to judge that a 
model is validated depends on the context of the problem and the intended use of the model Barlas 
and Carpenter (1990). Several attempts have been made to structure and classify validation 
approaches and techniques. 

 
1 See also Breisbart (2019) for a recent discussion of the different definitions. 

2 For instance, the conceptual model can be a verbal description, mathematical formulation, governing 
relationships, or ”natural laws” that approximate the real system (Schlesinger, 1979). 
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Among the first to provide a framework to review the credibility of simulation models were Schlesinger 
(1979), who state that model validation is the “substantiation that a computerized model within its 
domain of applicability possesses a satisfactory range of accuracy consistent with the intended 
application of the model”. Before and since then clarification or modifications of this definition as well 
as alternative formulations are used in the literature e.g., (Anderson, 1974; Beisbart, 2019; Mitchell, 
1997; Oreskes et al., 1994; Rand & Rust, 2011). The common denominator, however, is that models 
cannot be proved valid, but can only be judged to be so (Barlas & Carpenter, 1990). In this respect, 
Balci (1998) argues, the “adjective ’sufficient’ must be used in front of terms such as model credibility, 
model validity, or model accuracy to indicate that the judgment is made with respect to the study 
objectives”. Similarly, Kleijnen (1995) highlights that a model should be “good enough”, because the 
result of validation is never a perfect model because this would be an exact copy of the real system 
itself. Rather the relation between the purpose of the analysis and the type of model to accomplish a 
given objective is central for the assessment of validity. Rykiel (1996) states that validation ensures 
that a “model is acceptable for its intended use, i.e., whether the model mimics the real world well 
enough for its stated purpose”. Validation thus refers to a sequence of activities that determine the 
usefulness of a model (Eker et al., 2018; McCarl, 1984). Before such activities can be carried out, the 
purpose of the model, the performance criteria, as well as the model context need to be specified 
(Rykiel, 1996). In this respect, Swinton (2018) emphasizes that finally the “audience” (e.g., users, 
stakeholders or other experts) make the call whether credibility is assigned to a model or its outcomes. 
Thus, validity is conditioned on both purpose or topic and the addressees that will use the model or its 
results. Figure 1 illustrates this triad. 
 

 

Figure 1: Validity triad (adopted from Swinton, 2018). 

 
To bluntly summarize, verification means building the model right while validation denotes building 
the right model (Balci, 1998)3 knowing that this is rarely an objective, binary judgment - not only by 

 
3 Note that Oreskes et al. (1994) famously argues to the contrary such that validation is to ensure a 
model does not contain known or detectable flaws and is internally consistent, while verification is the 
assertion or establishment of truth, which is almost never possible, because real world systems are 
never closed. However, verification and validation, as used in this report, is in line with the majority of 
works on simulation models (e.g., Sargent, 2013; Balci, 2004; Rykiel, 1996). 

Validity 

Audience Topic 

Feasible 
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evidence 
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the modeling team but also the audience - and conditioned on the context of the model’s application. 
With validation taken a broader perspective, verification is part of the validation process of simulation 
models such that a validated model always needs to be verified but verification does not necessarily 
yield a valid (or validated) model. Throughout the report we speak of a valid model if it has been 
validated and the validation did meet some quality criteria (Rykiel, 1996). A valid model in our context 
does not represent the universally true model rather the model structure or its outputs are sufficiently 
close to the workings or observed states of the real system (Mitchell, 1997). For the sake of brevity, 
we also use the term validation to refer to the model evaluation process instead, as it is often used in 
the literature, to refer to verification and validation (Oberkampf & Roy, 2010) or verification, 
validation, and testing (Balci, 1998) because both testing and verification is always part of the 
validation process of simulation models. 
    

4.2. Model testing and calibration  

Both, model testing and calibration are typically considered as part of the validation process. However, 
model testing is less a separate category. Rather, specific activities within verification and/or validation 
can be considered as model testing. Based on Macal and North (2005), Rand and Rust (2011) 
differentiate programmatic testing and test cases (Table 1). The first pertains to verification to ensure 
that the implemented model works as intended by the modeling team and it involves unit testing, code 
walkthroughs, debugging walkthroughs, and formal testing. Test cases use artificially generated data 
to check for correct model functionality, e.g., by specific scenario tests, corner cases, sampled cases, 
and relative value testing.  
 

Table 1: Model testing 

Test Description 

Unit testing Every unit or section of code has a test 
written for it 

Code walkthroughs Researcher/user and programmer together 
examine the code step by step 

Debugging walkthroughs Running the code examined at each or 
defined steps to check for the correct results 
at execution time 

Formal testing Correctness of the code is inferred by logic, 
which typically requires limited complexity of 
the model 

Specific scenario testing Given specific input, there is conceptual or 
expert knowledge about the results, which is 
compared to actual model behavior under 
this scenario 

Corner cases Extreme values of the inputs are used to test 
the model behavior 
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Sampled cases Based on a subset of input values the model 
results should be within a known range of 
possible outcomes 

Relative value testing If the relationship between an input and an 
output variable is known (by tendency), 
changing this input should cause the 
predicted change in output 

       Source: Adopted from Rand and Rust (2011). 

 
While some form of model testing is always performed (and required) within the modeling process, 
calibration has a direct link to empirically data (Moss, 2008). Hence, there might be instances of 
applications where calibration is not necessarily part of the validation process. For instance, 
deterministic, theory-based (numerical) simulations may not need to be calibrated or calibration takes 
only place in defining a potential range, averages or reasonable values of some exogenous variables. 
For most purposes, however, empirical data are employed in two ways Werker and Brenner (2004): 
(a) to set up the simulation model, i.e., to parameterize it and/or (b) to test the simulation model based 
on statistical approaches. In this respect, calibration is the estimation and adjustment of model 
parameters and constants to improve the agreement between model output and a data set (Rykiel, 
1996). For instance, van Vliet et al. (2016) review calibration approaches with respect to land-change 
models and find that statistical analyses and automated procedures are the two most common 
calibration approaches, while expert knowledge, manual calibration, and transfer of parameters from 
other applications are less frequently used.  
There are a number of techniques that can be applied within the validation process, but these 
techniques are not mutually exclusive for the one or the other purpose. In fact, a clear delineation 
between verification and validation, testing or calibration techniques themselves is not (and often 
cannot be) made, but the context in which these techniques are applied matters, i.e., whether to 
evaluate the sound transformation of the conceptual model into the simulation model or whether the 
simulation is a sufficiently good representation of the real system Bharathy and Silverman (2013). 
Before we present these techniques in more detail, that context within the simulation model life cycle, 
i.e, the occasions for model validation will be discussed.  

4.3. Modeling context  

Models are developed for specific purpose such that some can generate recommendations for action 
while others support decision-making (Eker et al., 2018). In general, models can be used for three 
purposes in particular (McCarl, 1984): structural exploration, (to discover the determinants influencing 
economic behavior), prediction (to forecast the consequences of decisions), and prescription (to 
identify the best or a desirable action for a given decision problem). Barlas and Carpenter (1990) argue 
that non-causal (statistical/correlational) models should only be used for prediction while causal 
(theory-like) models can be used for prediction and explanation. In this respect, the potential to use 
simulation models for “what-if” studies (e.g., in terms of sensitivity analysis) is valuable and even more 
so if it challenges prior assumptions used to represent a system (Oreskes et al., 1994).  
According to Bankes (1993) there are two very different modeling approaches: consolidative and 
exploratory modeling. In the first case, one consolidates known facts into a model to use it as a 
surrogate for the real world system. Marks (2013) calls such models descriptive models. The advantage 
of this approach is that it can represent system behavior sufficiently closely so that it can be used to 
predict consequences of decision or policies. The disadvantage is that comprehensive and adequate 
knowledge of the system is required. If these information or data are not available, one has to resort 
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to exploratory modeling, which uses a series of computational experiments to explore the implications 
of varying assumptions and hypothesis, i.e., these models address “what-if” questions and they are 
used as heuristics to guide decision making (Eker et al., 2018; Marks, 2013). Exploratory modeling can 
be used for three types of applications (Bankes, 1993): (a) data-driven exploration, (b) question-driven 
exploration, and (c) model-driven exploration.  
 

(a) data-driven exploration starts with a data set and attempts to derive insight from it by 
searching over an ensemble of models to find those that are consistent with the available data  
 

(b) question-driven exploration searches over an ensemble of models believed to be plausible to 
answer a question of interest  

 
(c) model-driven exploration involves neither a fixed data set nor a particular question or policy 

choice, but rather is a theoretical investigation into the properties of a class of models 
 
For any modeling approach, there is a variety of different models that can be used. In this respect, 
Kleijnen (1995) refers to Karplus (1983) who differentiates a whole spectrum of mathematical models, 
ranging from black box (non-causal) models (e.g., regression analysis in the social sciences) through 
gray box models (e.g., linear programming in ecology) to white box (causal) models (e.g., in physics 
and astronomy). Whatever type of model is used or whatever approach is taken, model validation 
depends on the intended use of that model. A valid (or validated) model for one purpose may not be 
valid for 10 another, e.g., a simulation model for a descriptive "what is” question may not be useful in 
a "what should be” context (Burton, 2003).  

4.4. Occasions for validation: The modeling process  

It is long been recognized that there needs to be a stage of validation within the modeling process 
(Mitchell, 1997; Pachepsky et al., 1996), but, in fact, model validation and eventually evaluation is a 
continuous process and not the end to a project or model’s development. On the one hand, validation 
needs to be conducted through the whole modeling process, which is illustrated in Figure 2. On the 
other hand, validation is an iterative but not a time-linear processes for two reasons: (a) validation 
criteria may evolve along with the model (Rykiel, 1996) and (b) new model applications may require 
repeated or adjusted model validation (McCarl, 1984; Reidsma et al., 2018).  
Basically any model development follows a similar process (Anderson, 1974; Balci, 1998; McCarl, 1984) 
with some deviations regarding the focus and context of the particular study. A general and simplified 
modeling process as shown in Figure 2 starts with the identification and formulation of the problem, 
including e.g., the definition of the research question(s) and modeling gaps as well as the future use of 
the model (1). Based on prior work, literature or logic the relevant system that should be investigates 
is characterized and a simplified representation of the real system is developed and synthesized into a 
conceptual model (2). This step of system analysis includes the identification of relevant features and 
interrelationships in the system and its environment with explicit consideration of stochastic elements 
(Anderson, 1974). The selection of the modeling approach (3) should be guided by these characteristics 
of the real world system and the intended use and objective of the model but might also be affected 
by (potential) data availability (4) or lack thereof. The model construction (5) represents the 
transformation of the conceptual model into the operational model, e.g., an empirical, theoretical, or 
simulation model. Calibration (6) refers to formal or informal statistical fitting of model parameters 
compared to the real world. While informal approaches include trial-and-error, i.e., best guesses by 
the modeler or expert knowledge, i.e., reasonable assumptions regarding values and functional 
relationships, formal approaches are based on statistical techniques and (often comprehensive) 
empirical data (McCarl, 1984; Troost, 2015). The outcome of the calibration stage is a base model (7) 
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that can represent the status quo or a benchmark to be used for scenario analysis. The identification 
of relevant scenarios belongs to stage of formulating the experiments (8) where these computational 
experiments correspond to "what-if” scenarios (Eker et al., 2018). In the case of complex simulation 
models with a large number of variables and parameters, concepts as design of experiment might be 
employed at this stage (Rand & Rust, 2011). The execution of different experiments in the final stage 
(9) of the presented modeling process generates a dataset that can be supplied to further analysis.  
It is quite clear that the outcome of stage (9) should be used to answer the initially stated (research) 
question or provide a solution to the problem statement (1). Hence, there is a natural feedback within 
the linearly presented modeling process of Figure 2, but not only in this case. Often validation is 
considered a necessary activity after the model is developed but validation is an iterative process and 
should start from the beginning and run through all stages of the modeling process (Balci, 1998; Bert 
et al., 2014; Bharathy & Silverman, 2013). In this respect, every stage of the modeling process provides 
the opportunity or need to revisit prior stages namely if the model fails a validation test (Rykiel, 1996). 
Examples include that the model outcome or behavior (observed in stage 9) does not resemble the 
real world system or that theoretical predictions (e.g., from stage 2) are not supported by empirical 
observations.  
 

 

Figure 2: A general representation of the modeling process. 

4.5. Validation approaches and concepts  

Balci (1998) differentiates validation approaches by who performs the tests and at which level of model 
development these tests are conducted:  
 

(1)   Perception   of   problem 

(2)   Conceptualization 

(3)   Selection   of   
modelling   approach 

(4)   Data   collection 

(5)   Model   construction 

(6)   Calibration 

(7)   Base   case   model 

(8)   Experiments   are   designed 

(9)   Experimentation   and   outcome   analysis 
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1. Private Testing. Represents informal, individual evaluation by the modeler, mostly without 
documentation.  
 

2. Submodel (Module) Testing. Each submodel (or module) independently passes through tests 
that are designed, executed, and documented by the modelling team.  

 
3. Integration Testing. These tests, conducted by the modelling team, aim to verify that no 

inconsistencies in interfaces and communications exist when submodels are combined.  
 

4. Model (Product) Testing. The modeling team seeks to access the model’s overall validity. This 
stage usually involves empirical validation (see section 4.5.1).  

 
5. Acceptance Testing. Stakeholders or third parties independently design, execute, and 

document model evaluation. The aim is to establish the simulation model’s credibility so that 
the results can be accepted and used by the stakeholders.  

 
The details of each level and what levels are required depends on the context and objectives of the 
model. For instance, integration testing is certainly required if the model consists of (a large number 
of) different modules while simpler applications do not necessarily feature this level. Also, acceptance 
testing might show different forms, e.g., if a simulation study is subject to peer-review, eventually 
published, and increasingly used (cited) in the academic literature, which lends an increasing degree 
of credibility to simulation results. Figure 3 illustrates the five levels of model testing, spanning from 
private testing (by the modeler itself) to acceptance testing (by stakeholders), with increasing 
complexity of planning and management of model evaluation from the inner to the outer level. 
 

 

Figure 3: Levels of model testing and trade-off between credibility and Difficulty. 
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Another common characterization of the validation process reflects the phases of model development. 
McCarl (1984) differentiates technical and operational validation. Technical validation concerns to test 
of a models assumptions and data, its formal logic (e.g., in terms of equations), and its predictive-
prescriptive ability. Operational validation is directed on the intended application of the model and 
includes (a) identifying the acceptable domain of use, (b) tests of mechanisms that adapt the model to 
a particular use case, (c) tests of model updating procedures, and (d) repeated technical validation for 
different applications of the model. Accordingly, the focus of technical validation are the early stages 
of the modeling process (e.g., stages 1 through 5 in Figure 3) while operational validation focuses 
mainly on the latter stages (e.g., stage 6 to 9). Among others, Sargent (2013) separates conceptual 
validation, verification, and also operational validation with conceptualization, model construction, 
and experimentation at the core of the respective validation stages. Figure 4 illustrates this validation 
process. Sargent (2013) defines conceptual model validation as the process to determine that the 
theories and assumptions underlying the conceptual model are correct and that the representation of 
the problem is reasonable for the intended purpose of the model. As defined in Section 4.1, verification 
ensures the correct implementation of a conceptual model into the operational (e.g., simulation) 
model Rand and Rust (2011). As before, operational validation determines that the models output 
behavior is sufficiently accurate with respect to the models intended use Sargent (2013).  
 

 

Figure 4: Simplified version of the model development process (Sargent, 2013). 

 
As Sargent (2013) observes, data validity is often not considered as part of model validation even 
though there is a strong emphasis on empirical data in validation (Eker et al., 2018). In fact, data that 
are collected from the real world system can inform the development of the conceptual model as well 
as the computer model (e.g., in terms of calibration) and can be used for model validation and 
experimentation (with the validated model) (Robinson, 1999). Figure 4 illustrates that data are crucial 
at most if not all stages of model validation. Data validity ascertains that data necessary for model 
building, model evaluation and testing, and conducting the model experiments to solve the problem 
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are adequate and correct (Sargent, 2013). This becomes particularly important because operational 
validity is often based on empirical validation, i.e., activities that involve comparisons of model outputs 
against real world data (Bert et al., 2014). The (simulation) literature places a priority on empirical 
validation as the compliance of model results and real world observations is an often used criteria for 
model credibility (Bharathy & Silverman, 2013; Eker et al., 2018; Moss, 2008; Topping et al., 2012). 
Because of the importance we will address empirical validation in more detail before aspects of 
integrated model evaluations are discussed.  

4.5.1. Empirical validation  

An empirically validated model is grounded on qualitative and quantitative data collected from the 
system of interest (Garcia et al., 2007). A single data gap or inconsistency can invalidate the results of 
any model and destroy the model’s credibility. Therefore, data validation is necessarily a part of the 
model validation process (Macal & North, 2005). Power (1993) distinguishes three types of empirical 
validity:  
 

• Replicative validity: The model matches data already acquired from the real system and used 
in the formulation and estimation phases of model design and construction.  
 

• Predictive validity: The model matches data before the data are acquired from the real 
system.  

 
• Structural validity: The model reproduces real system behavior such that it reflects operating 

characteristics of the real system.  
 
Especially for replicative and predictive validity it is often necessary to model the real world system 
closely to obtain good correspondence between model and reality (Topping et al., 2012). Depending 
on what type of empirical validity is the objective, different methods need to be employed. For 
instance, Power (1993) stresses that standard statistical techniques useful for the replicative validation 
of models include tests of means and variances, analysis of variance, goodness-of-fit, regression and 
correlation analysis and confidence interval construction.  
Power (1993) also discusses options for predictive validity including data splitting (cross-validation) 
and the evaluation and comparison of model predictions. While Diebold and Mariano (2002) discuss 
tests for evaluating predictive accuracy of competing model forecasts, Mitchell (1997) emphasizes that 
regressions are not appropriate for empirical validation with respect to model predictions. 
Lamperti (2018) provides a recent review of the literature on empirical validation and argues that a 
prerequisite for policy analysis with respect to macro-oriented models is their ability to replicate key 
empirical stylized facts. For instance, Giannone et al. (2006) and Canova and Sala (2009) present details 
regarding estimation and validation 15 of dynamic stochastic general equilibrium models where the 
vector autoregressive model is the basic econometric tool for empirical validation. On the other side 
of the spectrum, i.e., micro-(or firm-)level models, Windrum et al. (2007) review empirical validation 
of agent-based models and discuss three alternative approaches: (a) the history-friendly approach, (b) 
Werker-Brenner calibration, and (c) indirect calibration. While all are based or informed by empirical 
knowledge, the resemblance between simulation history and real world history decreases from (a) to 
(c). While the first aims for the highest correspondence between simulated and observed history of 
the system, the latter focuses on empirical evidence on stylized facts to restrict the parameter space 
(Moss, 2008).  
All of the above concern validation by result (McCarl, 1984) as model output actually is or can be 
compared to the real world system. In contrast, validation by assumption is another important type of 
validation, where prior theoretical or expert knowledge is used, especially regarding conceptual model 
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building or model calibration, e.g., if appropriate empirical data are not available. Ideally, the real world 
system should be adequately represented by the model on both a micro and a macro-level (Garcia et 
al., 2007). In this respect, Utomo et al. (2018) references literature distinguishing black box and white 
box validation. The authors define black box validation as the evaluation of whether the model outputs 
either reflect the empirical observations for the same set of inputs or are consistent with the result 
from a mathematical model. White box validation evaluates whether the decision rules of agents 
represent the decision rules of actors in the real world and whether the structure of the model (such 
as the network between agents) represents reality (Utomo et al., 2018).  

4.5.2. Integrated evaluation  

It is generally accepted that the modeling process includes a stage of validation (Mitchell, 1997), e.g., 
contrasting model output with empirical data. An integrated approach to model evaluation 
emphasizes the fact the validation needs to start from the beginning of the modeling process, i.e., the 
conceptual design stage (Bert et al., 2014) and needs to run through the entire life cycle of the 
(simulation) model (Bharathy & Silverman, 2013; McCarl, 1984; Rykiel, 1996). The more validation 
techniques (see section 4.7) are applied, the higher the credibility of models (Eker et al., 2018) and 
validation experiments, in contrast to traditional experimentation, particularly aim to determine the 
usefulness of a model, e.g., in terms of its predictive capability (Oberkampf & Roy, 2010). In this 
respect, integrated model evaluation is a process of evidence accumulation to support the case for 
using simulation models in complex, risky decision making situations (Trucano et al., 2006).  
While Schwanitz (2013) points out that there is little understanding let alone consensus on how 
complex models can be evaluated and accepted standards are missing, Jakeman et al. (2006) argue 
there are specific points that need to be considered to obtain credible results. The authors present ten 
steps that, independent of the modeling problem, should be followed and the present section is based 
on this discussion as it summarizes and synthesizes considerations from different fields and 
approaches. The ten steps laid out by Jakeman et al. (2006) are illustrated in Figure 5. The figure also 
highlights that validation itself can be decomposed in a number of steps and can be presented 
sequentially, but model evaluation is iterative in nature (Oberkampf & Roy, 2010).  
Jakeman et al. (2006) provide a detailed description of these steps. The important implication for the 
MIND STEP project is that each of these steps require decisions between alternative options in the 
modeling process and respective justification for choosing one alternative over another. Transparent 
documentation of these decisions are apt to increase model credibility. For instance, Schwanitz (2013) 
develop an evaluation framework for models of global climate change based on systematic and 
transparent step-by-step demonstration of a models usefulness testing and the plausibility of its 
behavior. The author emphasizes that setting up an evaluation framework, evaluation of the 
conceptual model, code verification and documentation, model evaluation, uncertainty and sensitivity 
analysis, documentation of the evaluation process, and communication with stakeholders are 
important steps. Bert et al. (2014) provide an evaluation framework for land use modeling based on 
the validation of model processes and components (including the comparison with alternative models 
and the involvement of stakeholders) as well as empirical validation. Reidsma et al. (2018) further 
argue that model structure and design as well as underlying assumptions and model constraints have 
considerable effect on model results and there is a clear need for the comparisons of different models 
or approaches. As emphasized by Marks (2013), model evaluation among several contending models 
can point the researcher and stakeholders to the “best” model or modeling framework. 
In their recent overview, Fagiolo et al. (2019) critically review existing validation techniques for agent-
based models. The authors develop a conceptual framework along three dimensions: (i) comparison 
between artificial and real-world data; (ii) calibration and estimation of model parameters; and (iii) 
parameter space exploration. Despite their focus on agent-based models, some of the conclusions 
apply more broadly: (a) Pros and Cons of different validation are not always available and an "if-then 
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map” for selecting the right tool for specific situations is still not available. (b) The development of 
better empirical-validation techniques is a never-ending process, which must naturally co-evolve 
together with the developments of new models, new statistical techniques and with the increase in 
computational power.  

4.6. On validation criteria  

One precondition for successful model evaluation is that the performance criteria are specified 
(Anderson, 1974; Rykiel, 1996), i.e., quality indicators that lead to the judgment of the model being 
valid (or sufficiently valid). We need to recognize that model performance may be assessed against 
many criteria (Jakeman et al., 2006), but it is important that these criteria are defined and justified 
with reference to the purpose of the model (Mitchell, 1997).  
 

For econometric models, validity is usually examined by a set of statistical tests that typically include 
objective criteria (Anselin, 1988), e.g., goodness of fit. This objectiveness or typically agreed standards 
account for demanded “’transparency’ of the techniques for obtaining ’credible’ causal effects 
for ’evidence-based policy evaluation’” (Panhans & Singleton, 2017). In the case of simulation models, 

Figure 5: Iterative relationship between model building and evaluation steps according to Jakeman et 
al. (2006). 



 

D6.1 REPORT ON OPTIONS FOR QUALITY MANAGEMENT, 
VALIDATION REQUIREMENTS & SUITABILITY OF VALIDATION TOOLS 

 

 

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement N° 817566. 

 
21 

 

 

however, a common and unique framework for model validation is missing (Kaye-Blake et al., 2014). 
Instead, the evaluation process is strongly dependent on a couple of factors such as purpose of the 
model, data (availability), or conceptual framework. If inputs and outputs of the real system can be 
measured, techniques for comparing simulated and real data can also rely on statistical tests. In this 
respect, the ability to replicate the history of a system is a commonly used validity criterion concerning 
its predictive power (Eker et al., 2018). Among others, Power (1993) discusses criteria for predictive 
model validation including tests of means and variances, goodness-of-fit testing, regression and 
correlation analysis. 
Other evaluation criteria can be derived by comparing (the outcome of) different models. On the one 
hand, the equivalency between two models provides a validation for each model (Burton, 2003) or, as 
Macal and North (2005) citing Axelrod (1997) put it: "replication of results from multiple models is one 
of the hallmarks of cumulative science”. On the other hand, one is interested in whether a model 
performs better compared to alternatives (Marks, 2013; McCarl, 1984). In this respect, there are two 
different levels of equivalency between models (Axelrod, 1997; Burton, 2003): distributional and 
relational. Numerical and distribution equivalency requires the same (numerical) results; relational 
equivalency requires equivalent internal relation results. Depending on the purpose of the model, 
priority might be placed on the one or the other aspect of this comparison. For instance, Axtell et al. 
(1996) presents concepts and methods for the alignment of computational models that deal with the 
same phenomena. One challenge, however, is that even within one stream of modeling, there are 
often difficulties comparing the relative explanatory power of models from different methodological 
lineages (Barde, 2017). Hence, several authors propose indicators that can be applied to any model 
able to simulate or predict time series data (Barde, 2017; Lamperti, 2018; Marks, 2013).  
If models and submodels include unobservable inputs and outputs, they can not be subjected to 
common statistical tests and instead sensitivity analysis is required, i.e., what-if analysis in terms of a 
systematic investigation of changes in model inputs or model structure on model outputs (Kleijnen, 
1995). Because each computational experiment corresponds to an uncertain what-if scenario, the 
model may generate a large ensemble of exploratory scenarios and representation accuracy may be 
less important in validation than the qualitative behavior of the model. In this respect, there is an 
important difference to econometric model “validation” because the nature of quality criteria are 
openly subjective, e.g., whether model behavior is inline with the judgments of experts (Jakeman et 
al., 2006). This is especially true for economic models (or modeling human behavior in general) while 
most advanced methods of validation were developed in engineering where model behavior is 
determined by fundamental physical laws (Louie & Carley, 2008). In this respect, Burton and Obel 
(1995) argue that "realism in computational modeling is clearly germane; but, balance is a more 
demanding criterion. Without some degree of realism, computation modeling becomes a logical 
and/or numerical exercise. At the other extreme, total realism may create an imbalance with all the 
experimental and analytical issues that any real world field experiment has.” In fact, perfect 
confirmation in terms of a model’s consistency with all available knowledge shouldn’t be the criterion 
for such model evaluation rather the fitness for purpose and transparency of the process by which the 
model is produced needs to be accounted for (Jakeman et al., 2006). In this respect, the common 
argument is that the entire life cycle of model development, use and improvement needs to be 
considered to assess model validity (Bharathy & Silverman, 2013; McCarl, 1984; Rykiel, 1996).  
In their review, Eker et al. (2018) identify important validation criteria based on a survey among 
practitioners. The authors show that important criteria for a model’s validity or credibility are  

1. how useful it is for a given purpose (79% of respondents agree or strongly agree),  

2. how well it represents reality (67%), 

3. if uncertainties and critical assumptions are communicated well (65%), 

4. if it can replicate historical data (62%).  
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While these criteria can be defined and accounted for during model development, one of the most 
important criteria indicating the validity of a model is its acceptance by the model user (Swinton, 2018), 
which Schlesinger (1979) denote as “model certification” and which can only be accessed ex post. One 
example, relevant in the MIND STEP project can be the introduction of a model(ling framework) into 
the “Modelling Inventory and Knowledge Management System of the European Commission”, the 
MIDAS database (see section 5). Another important criteria is the use of models and their results in 
academic publications. While Finger et al. (2022) are critical about a single indicator with respect to 
evaluating the performance of agricultural economics journals, citations are still one of the major 
quality criteria for any type of research and so indicate credibility of simulation studies as well. 
Typically, this is the only external validation of simulation models in agricultural economics. As Balci 
(1998) argues (see section 4.8) the developer with the most knowledge of the model may be the least 
independent and external validation by an independent party can improve the credibility of a model 
and the very fact that this type of validation was carried out can serve as validity criteria. Of course, 
such validation is the most time and cost consuming but, e.g., Sargent (2013) argue that if independent 
validation is conducted on a completed simulation model, it is usually best to only evaluate the 
verification and validation that has already been performed. In any case, the trade-off between the 
cost of the validation process and individual techniques employed within it and the benefits of the 
validity information need to be considered and will determine the validation strategy (McCarl, 1984; 
Sargent, 2013). 

4.7. Validation techniques  

In the following, some selected validation techniques are briefly described while additional options are 
presented by Balci (1998), who provides a comprehensive discussion of over 70 techniques. Appendix 
1 contains an excerpt of Balci (1998) taxonomy. The following list is composed based on Power (1993), 
Rykiel (1996), Baldos and Hertel (2013) and Sargent (2013). The techniques are presented in 
alphabetical order. 
 
Animation: The model’s dynamic behavior is displayed graphically. For instance, a grid of plots may 

represent the fields in a region and colors illustrate its current use while a change of the color 
represents land use change during the simulation.  

Comparison to other models: The output of the (simulation) model is compared to the results of other 
(validated) models.  

Cross validation/data splitting: The available data is split into two data sets: an estimation and a 
prediction data set. The estimation data set is used to estimate model parameters and to assess 
the replicative validity of the resulting model. The prediction data set is used exclusively for 
predictive validation.  

Data relationship correctness: Requires data to have the proper values regarding relationships that 
occur within a type of data and between different types of data. For example, are the input-output 
levels for a given production activity correctly presented.  

Degenerate tests: The degeneracy of the model’s behavior is tested by appropriate selection of values 
of the input and internal parameters. For instance, does the number of farms in a region decrease 
if the farm exit rate is larger than the farm entry rate.  

Event validity: A comparison between the model and system is made of the occurrence, timing and 
magnitude of simulated and actual events. For instance, farm exit might be triggered by profitability 
or generation change.  
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Extreme condition test: The model structure and outputs should be plausible for any extreme and 
unlikely combination of levels of factors in the system.  

Face validity: Expert assessment if the model and its behavior are reasonable, i.e., whether the model 
logic and input-output relationships appear reasonable on the face of it given the model’s purpose.  

Historical data validation: Evaluate the model performance (results and dynamic behavior) under 
given specifications against the historical system behavior.  

Internal validity: Several replications (runs) of a stochastic model are made to determine the amount 
of (internal) stochastic variability in the model.  

Multistage validation: Validation methods are applied to critical stages in the model building process: 
(1) developing the model on theory, observations, and general knowledge; (2) validating the 
model’s assumptions where possible by empirically testing them; and (3) comparing (testing) the 
input-output relationships of the model to the real system.  

Predictive validation: The model is used to forecast the system behavior and comparisons are made 
to determine if the system’s behavior and the model’s predictions are the same. The system data 
may come from data sets not used in model development or from future observations of the 
system. The strongest case is when the model output is generated before the data are collected. 

Sensitivity analysis: The (systematic) change of input values and internal parameters of a model to 
determine the effect upon the model’s behavior or output. Parameters that are sensitive, that is, 
cause significant changes in the model’s behavior or output (qualitatively and/or quantitatively), 
should be made sufficiently accurate prior to using the model.  

Structured walkthrough: The entity under review is formally presented usually by the developer to a 
peer group to determine the entity’s correctness. An example is a formal review of computer code 
by the code developer explaining the code line by line to a set of peers to determine the code’s 
correctness.  

Trace: The behavior of specific variables is traced through the model and through simulations to 
determine if the behavior is correct and if necessary accuracy is obtained.  

Turing tests: Knowledgeable individuals are asked if they can discriminate between system and model 
outputs.  

Statistical validation: A variety of tests performed during model calibration and operation. Three cases 
are most common: (1) the model produces output that has the same statistical properties as the 
observations obtained from the real system; (2) the error associated with critical output variables 
falls within specified or acceptable limits; (3) several models are evaluated statistically to determine 
which test fits the available data.  

Visualization techniques: The dynamical behaviors of performance indicators are visually displayed as 
the (simulation) model runs through time to ensure that the performance measures and the model 
are behaving correctly. Such visualization can form the basis for comparisons between system and 
model and a subjective statement concerning the visual goodness of fit. 

4.8. Principles of model evaluation  

Despite the wide variety of possible validation techniques, occasions and the context of the simulation 
study, any activity intended to demonstrate validity and to increase credibility of model results should 
follow a number of principles for a successful simulation study. The following list is adopted from Balci 
(1998).  
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Principle 1: Model evaluation, i.e., verification, validation, and testing has to be conduct at every stage 
of a study’s life cycle.  

To ensure the validity, accuracy, and reliability, model evaluation is an ongoing activity. In this way, the 
quality shortcomings can be recognized and be corrected as the project progress through the 
simulation phases.  

Principle 2: The outcome of model evaluation is rarely that a model is absolutely correct or absolutely 
incorrect.  

Because models are abstraction from reality, perfect representation of the real system cannot be 
expected and a dualistic view that a model is either correct or incorrect is not adequate. Instead, it is 
reasonable to consider the outcome of model evaluation as a degree of credibility on a scale between 
0 to 100, where 0 represents incorrect, and 100 represents correct. As model credibility increases, the 
model development cost will increase. Likewise, the model utility will increase but at a slower rate.  

Principle 3: A simulation model is built and its credibility is judged with respect to the study objectives.  

For a simulation study to be successful, the objectives and specifications of the model must be precise. 
The level of representation required from the model will depend on the study’s objectives and a higher 
or lower representation accuracy will be required depending on the importance of the decisions based 
on the simulation results.  

Principle 4: Model evaluation requires independence to prevent developer’s bias.  

The model developer with the most knowledge of the model may be the least independent when it 
comes to testing because they may fear that negative results impede the credibility of the model. 
Model testing is most credible in itself if conducted by an independent, unbiased party. Two 
alternatives can achieve independence: (a) There is an independent team within the organization to 
design, conduct, and document model testing or (b) a third party is responsible for this task.  

Principle 5: Model evaluation is difficult and requires creativity and insight.  

Adequate model evaluation requires understanding the problem, command of the simulation model, 
experience with the modeling methodology, ability to identify suitable test cases, and familiarity with 
the evaluation framework. While developers are best qualified to demonstrate creativity and 
knowledge of a model’s internals since they are intimately familiar with them, they are not 
independent. Independent testing makes the evaluation process more complicated, which requires 
good planning and management.  

Principle 6: Credibility can be claimed only for the conditions for which the (simulation) model is 
tested.  

Because the initialization of a simulation model impacts the precision of the input-output 
transformation, a transformation that works for one set of input conditions might produce nonsensical 
results under a different set of input conditions.  

Principle 7: Complete model evaluation is not possible.  

An exhaustive (complete) model evaluation may require testing it under every possible input 
condition. Instead, model testing may focus on increasing confidence in the model’s validity as 
determined by the study objectives. To estimate what percentage of the valid input domain is covered 
by the test data is important because credibility of a model increases with an increase in this coverage.  

Principle 8: Model evaluation must be planned and documented.  

Testing is not a phase or step in the model development life cycle, it is a continuous activity throughout 
the entire life cycle. For successful testing, careful planning and transparent documentation is 
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required. For instance, a test plan should describe what is selected for testing, data and code, test 
specifications, standards and conventions, test tools, and the expected and/or obtained results. 
Beyond the development team, project management and stakeholders should be involved in these 
tasks.  

Principle 9: Type 1, 2, and 3 errors must be prevented.  

Type 1 error occurs when a sufficiently credible result is rejected. Type 2 errors represent the opposite, 
i.e., invalid simulation result are accepted. Type 3 errors occur when a simulation fails to solve the 
actual problem, i.e., a solution is accepted but the problem formulation does not completely (or 
adequately) contain the actual problem.  

Principle 10: Errors should be detected as early as possible in the modeling process.  

Because detecting and correcting errors in later stages of the model life cycle (e.g., at the 
implementation stage) can be time-consuming, complex, and expensive, the main goal is to identify 
and resolve problems as soon as possible.  

Principle 11: Multiple response problem must be recognized and resolved properly.  

Simulation models with several output variables (responses) cannot be adequately validated with a 
univariate statistical approach. Instead, a multivariate statistical procedure is required to consider 
correlations among output variables by comparing them to system output (observations).  

Principle 12: Successfully testing each submodel (module) does not imply overall model credibility. 

Even if each submodel is credible (individually), the whole, aggregated model may not be (sufficiently) 
credible. Submodel errors can accumulate for the aggregated model. Therefore, the whole model must 
be tested despite sufficient credibility at the submodel-level.  

Principle 13: Double validation problem must be recognized and resolved properly.  

If data can be collected on both system input and output, model validation can be conducted by 
comparing model and system outputs obtained by running the model with the ”same” input data that 
drives the system. Determination of the “same” is yet another validation within model validation: the 
double validation problem. The “same” is determined by validating the input data models before 
validating simulation results.  

Principle 14: Simulation model validity does not guarantee the credibility and acceptability of 
simulation results.  

Model validity is a necessary but not sufficient condition for the credibility and acceptability of 
simulation results. There is a difference between the model credibility and the credibility of simulation 
results. The first is judged with respect to the system (requirements) definition and the study 
objectives, whereas the credibility of simulation results is judged with respect to the actual problem 
definition and involves the assessment of system definition and identification of study objectives. 
Therefore, model credibility assessment is a subset of credibility assessment of simulation results. 

Principle 15: Formulated problem accuracy greatly affects the acceptability and credibility of 
simulation results.  

The correct formulation of a problem can be even more crucial than its solution. The goal of a 
simulation study should not be to provide a solution, but to provide results that are credible, accepted, 
and eventually support decision making by stakeholders. 
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5. VALIDATION OF THE MIND STEP TOOLBOX 
The common framework and indicator system for model validation within the MIND STEP project is 
guided by concepts and principles presented in the previous sections. Figure 6 provides an illustration 
of components and linkages for model evaluation. The underlying idea is that the tasks of quality 
management and validation are entangled, mutually condition themselves but also complement each 
other. For instance, good and transparent documentation is one crucial requirement for quality 
management but also necessary for successful validation while the clear allocation of responsibility is 
important for quality management, but might be less relevant in the realm of validation. In general, 
Figure 6 emphasizes the point that model evaluation is a process consisting of a set of validation (or 
testing) techniques – grouped into validation, verification, as well as calibration – and supported or 
complemented by quality management, and (mostly) dependent on data. Furthermore, a key aspect 
of model validation within the project is involvement of stakeholders. For instance, two stakeholder 
workshops where organized within work package 1 to identify relevant policy areas and scenarios 
(Coderoni et al., 2020; Pérez-Soba et al. 2021). A third workshop to focus on model evaluation will be 
organized within Task 6.3 in autumn of 2022. 

               

Figure 6: Framework for Model Evaluation within the MIND STEP project. 

Because each of these components have different priorities and organization depending on the model 
and its purpose in MIND STEP, we aim to collect more information from the partners with a survey to 
identify important concepts and approaches but also gaps or challenges in the project. The survey is 
based on the "Checklist for the Quality of Models, Datasets and Indicators” by the Wageningen 
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Modeling Group (Müller et al., 2021) and the structure of the "Modelling Inventory and Knowledge 
Management System of the European Commission” (MIDAS). Both sources where synthesized and 
adapted to specific requirements by the MIND STEP project. The latter concerns for instance the need 
for modularity (Britz et al., 2021) and the aim for sustainable research software development (Anzt et 
al., 2021).  
The structure of the survey is shown in Table 2 and a more detailed presentation is provided in 
Appendix 2. In general, the survey includes all entries of the MIDAS database for two reasons: (a) Some 
of the models that belong to the MIND STEP model were and are already used by the European 
Commission to support policy making and thus already listed in the database. Hence, there was the 
aim to be consistent with information that is available and required for MIDAS. (b) The gathering of 
these information shall help to efficiently transfer new or updated information about the models to 
the MIDAS database if models or their results are or will be used by the European Commission. Beyond 
the MIDAS entries, the survey includes detailed questions about validation techniques and the 
potential for modularity. 
The survey designed will be finalized within Task 6.2.1 (Validation of the MIND STEP model toolbox), 
where also the distribution (in terms of an online questionnaire) and its analysis will be conducted. The 
aim of the survey is to collect and synthesize important approaches to model evaluation as used within 
the MIND STEP project. On the one hand, we aim to provide a transparent documentation of validation 
efforts as it pertains to the individual models. This also includes the identification of challenges and 
gaps in model evaluation potentially due to lack of data or resources. On the other hand, we seek to 
provide a guideline on the evaluation of models and results for integrated applications as planned for 
Task 6.4 (Policy Evaluation) in the last phase of the MIND STEP project. With new or varied application 
as foreseen in this task, the guideline shall help to identify appropriate and potentially additional 
requirements to improve model validity and the credibility of the obtained results. 

 

Table 2: Structure of the Survey. 

Category Description 

Overview Summarizes important information and features of the model including the 

objectives of the model, the modeling approach, the nature of input and 

output data, its spatial and temporal resolution, (potential) applications, 

and ownership of the model. 

Quality Concerns detailed information on model calibration, verification, and 

validation. For instance, if and how uncertainties are considered in the 

model, whether there is a sensitivity analysis conducted and if so how, and 

which validation techniques and criteria where used. 

Transparency Describes whether or under which conditions data, code, or results are 

available to third parties or the public; Provides information on extent of 

model documentation and whether version control, a management, or 

development plan are established. 

Policy Support Information on (potential) applications including benefits and potentials for 

policy assessment, the area of application, and which stage of the policy 

cycle can be targeted (e.g., policy formulation or implementation). 

References Provides additional resources like model documentation, model code, 

description of applications, peer-reviewed publications, or studies that use 

the model or its results. 
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6. SUMMARY 
With the increasing importance of simulation models in research in general and for the evaluation of 
policies within impact assessment in particular, there is increasing attention towards the reliability of 
these models and their result—in other words how credible can these models be used for decision 
support. Model evaluation, i.e., verification and validation, takes center stage in this question but also, 
or in combination to that is the necessity of quality management as both models and use cases become 
increasingly complex.  

The present deliverable reports on options for quality management and model evaluation based on a 
comprehensive literature review. The report shows that there is a shift in the last couple of years in 
both of these areas. On the one hand, quality management does not only comprise certain 
requirements related to data quality, coding conventions or documentation of models, but also that 
specific expectations can be met that concern the design of models (modularity) and the maintenance 
of them (in terms of providing sustainable research software). On the other hand, the focus of model 
validation did also change. While empirical validation, i.e., confronting model structure and output 
with observational evidence, is still the most important aspect of validation, there is increasing 
emphasis on comprehensive and efficient interaction between modelers and stakeholders. 

Considering these developments and based on existing frameworks for quality management and 
model evaluation, Task 6.1 developed the common framework and indicator system for model 
validation for the MIND STEP toolbox. The aim is to support validation across the work packages in 
MIND STEP and to provide a guideline and identification of indicators to assess model validity on 
different scales. Given the wide variety of different models and potential applications, the challenge 
was to provide a sufficiently flexible but also detailed framework to provide a reasonable source of 
information. The framework will serve as basis for an online survey conducted in Task 6.2 to 
transparently document model quality and validation among the partners, focusing on each individual 
model used or developed within the MIND STEP project. 
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APPENDIX 1: TECHNIQUES FOR MODEL 
EVALUATION 

Verification, Validation and Testing Techniques 
 

Informal Static  Dynamic Formal 
Audit 
Desk Checking  
Documentation 
Checking  
Face Validation  
Inspections  
Reviews  
Turing Test  
Walkthroughs 

Cause-Effect Graphing 
Control Analysis 

Calling Structure 
Analysis 
Concurrent Process 
Analysis 
Control Flow Analysis 
State Transition 
Analysis 

Data Analysis 
Data Dependency 
Analysis 
Data Flow Analysis 

Fault/Failure Analysis 
Interface Analysis 

Model Interface 
Analysis 
User Interface 
Analysis 

Semantic Analysis  
Structural Analysis  
Symbolic Evaluation. 
Syntax Analysis  
Traceability Assessment 

Acceptance Testing 
Alpha Testing 
Assertion Checking 
Beta Testing 
Bottom-Up Testing 
Comparison Testing 
Compliance Testing 
Authorization Testing 
Performance Testing 
Security Testing 
Standards Testing 
Debugging 
Execution Testing 

Execution Monitoring 
Execution Profiling 
Execution Tracing 

Fault/Failure Insertion Testing 
Field Testing 
Functional (Black-Box)Testing 
Graphical Comparisons 
Interface Testing 

Data Interface Testing 
Model Interface Testing 
User Interface Testing 

Object-Flow Testing 
Partition Testing 
Predictive Validation 
Product Testing 
Regression Testing 
Sensitivity Analysis 
Special Input Testing 

Boundary Value Testing 
Equivalence Partitioning 
Extreme Input Testing 
Invalid Input Testing 
Real-Time Input Testing 
Self-Driven Input Testing 
Stress Testing 
Trace-Driven Input Testing 

Statistical Techniques 
Structural (White-Box)Testing 

Branch Testing 
Condition Testing 
Data Flow Testing 
Loop Testing 
Path Testing 
Statement Testing 

Submodel/Module Testing 
Symbolic Debugging 
Top-Down Testing 
Visualization/Animation 

Induction 
Inductive Assertions 
Inference 
Lambda Calculus 
Logical Deduction 
Predicate Calculus 
Predicate 
Transformation 
Proof of Correctness 
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APPENDIX 2: SURVEY OF QUALITY MANAGEMENT 
AND VALIDATION 

Item  Explanation  MIDAS 
export 

Overview 

Main Purpose Brief description of the objective(s) of the model/database. yes 

Summary The summary should mention the area of application (regional 
focus or generic) as well as the theoretical and methodological 
framework based on the underlying paradigms (positive or 
normative approach) and core assumptions. 

yes 

Model Type Please specifiy the type of the model, e.g., partial or general 
equilibrium, ABM, (non-)linear programming 

yes 

Ownership Who is the owner of the model yes 

Licence e.g., open source yes 

Homepage   yes 

Details On Model 
Structure And 
Approach 

Highlighting the conceptual model and model structure with the 
main modules (e.g., flow charts) and processes, i.e., the major 
stages in excecuting the model.   

yes 

Modularity Is the model integrated or linked to another model? no 

  If yes, specify if input from other models is used, the output of 
the model will be feed into (an)other model(s) or if the model is 
or can be integrated into a (meta)model.  

no 

The parameters, 
variables, inputs to 
and output of the 
model are described 

  no 

Model Inputs List of model input with description, unit of measurement, and 
data source 

yes 

Model Outputs List of model output with description and unit of measurement. yes 

Model Spatial-
Temporal Resolution 
And Extent 
  

state: Spatial Extent/Country Coverage, Spatial Resolution, 
Temporal Extent, Temporal Resolution 

yes 

Calibration of 
parameters 

Has the model been calibrated? Are criteria for the goodness of 
the calibration been described?  

no 
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Item  Explanation  MIDAS 
export 

Quality  

Model uncertainties Models are by definition affected by uncertainties (in input data, 
input parameters, scenario definitions, etc.). Have the model 
uncertainties been quantified? Are uncertainties accounted for 
in your simulations? 

yes 

  Please specify yes 

Sensitivity analysis Sensitivity analysis helps identifying the uncertain inputs mostly 
responsible for the uncertainty in the model responses. Has the 
model undergone sensitivity analysis? 

yes 

  Please specify yes 

Model verification The technical environment is documented no 

 
 The model is tested no 

   Please specify no 

Model validation Has model validation been done? Have model predictions been 
confronted with observed data (ex-post)? 

yes 

  Brief summary of procedures that were used as detailed below. yes 

Animation The model’s operational behaviour is displayed graphically as 
the model moves through time. For instance, a grid of plots may 
represent the fields in a region and  colors illustrate its current 
use while a change of the color represents land use change 
during the simulation.  

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Comparison to other 
models 

 The output of the (simulation) model is compared to the results 
of other (validated) models. 

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Cross validation/data 
splitting 

Division of the available data into two data sets: an estimation 
and a prediction data set. The estimation data set is used to 
estimate model parameters and to assess the replicative validity 
of the resulting model. The prediction data set is used 
exclusively for predictive validation.  

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Data relationship 
correctness 

Requires data to have the proper values regarding relationships 
that occur within a type of data and between different types of 
data.  For example, are the input-output levels for a given 
production activity correctly presented.  

no 
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Item  Explanation  MIDAS 
export 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Degenerate tests The degeneracy of the model’s behaviour is tested by 
appropriate selection of values of the input and internal 
parameters. For instance, does the number of farms in a region 
decrease if the farm exit rate is larger than the farm entry rate.   

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Event validity A comparison between the model and system is made of the 
occurrence, timing and magnitude of simulated and actual 
events. For instance, farm exit might be triggered by profitability 
or generation change. 

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Extreme condition 
test 

The model structure and outputs should be plausible for any 
extreme and unlikely combination of levels of factors in the 
system.  

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Face validity Expert assessment if the model and its behavior are reasonable, 
i.e., whether the model logic and input-output relationships 
appear reasonable ‘on the face of it’ given the model’s purpose.  

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Historical data 
validation 

Evaluate the model performance (results and dynamic 
behaviour) under given specifications against the historical 
system behaviour  

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Internal validity Several replications (runs) of a stochastic model are made to 
determine the amount of (internal) stochastic variability in the 
model.  

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Multistage validation Validation methods are applied to critical stages in the model 
building process: (1) developing the model on theory, 
observations, and general knowledge; (2) validating the model’s 
assumptions where possible by 
empirically testing them; and (3) comparing (testing) the input–
output relationships of the model to the real system.  

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 
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Item  Explanation  MIDAS 
export 

Predictive validation The model is used to forecast the system behavior and 
comparisons are made to determine if the system’s behavior 
and the model’s predictions are the same. The system data may 
come from data sets not used in model development or from 
future observations of the system. The strongest case is when 
the model output is generated before the data are collected.  

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Sensitivity analysis: The (systematic) change of input values and internal parameters 
of a model to determine the effect upon the model’s behaviour 
or output. Parameters that are sensitive, that is, cause 
significant changes in the model’s behaviour or output 
(qualitatively and/or quantitatively), should be made sufficiently 
accurate prior to using the model. 

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Structured 
walkthrough 

The entity under review is formally presented usually by the 
developer to a peer group to determine the entity’s correctness. 
An example is a formal review of computer code by the code 
developer explaining the code line by line to a set of peers to 
determine the code’s correctness.  

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Trace   The behavior of specific variables is traced through the model 
and through simulations to determine if the behavior is correct 
and if necessary accuracy is obtained. 

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

 Turing tests  Knowledgeable individuals are asked if they can discriminate 
between system and model outputs. 

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Statistical validation A variety of tests performed during model calibration and 
operation. Three cases occur most often:  (1) the model 
produces output that has the same statistical properties as the 
observations obtained from the real system; (2) the error 
associated with critical output variables falls within specified or 
acceptable limits; (3) several models are evaluated statistically 
to determine which test fits the available data.  

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 
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Item  Explanation  MIDAS 
export 

Visualization 
techniques 

The dynamical behaviours of performance indicators are visually 
displayed as the (simulation) model runs through time to ensure 
that the performance measures and the model are behaving 
correctly. Such visualization can form the basis for comparisons 
between system and model and a subjective statement 
concerning the visual goodness of fit.] 

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Others Were other validation procedures (not listed above) applied? no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Data validity Data are (judged) appropriate, accurate, and sufficient data are 
available. Data transformations are correct. Appropriate 
validation procedures (e.g., as listed above) are used to 
determine data validity.  

no 

  Brief description/justification of procedure and validation 
criteria (e.g., objective indicator or subjective judgement) 

no 

Transparency 

Availability of the 
underlying data 

Is the model underlying database (i.e. the database the model 
runs are based on) publicly available? 

yes 

  Please specify yes 

Availability of model 
outputs 

Can model outputs be made publicly available? yes 

  Please specify yes 

Model 
documentation 

Is the model transparently documented (including underlying 
data, assumptions and equations, architecture, results) and are 
these documents available to the general public? 

yes 

  The references to model documentation are provided by … yes 

Accessibility to the 
model source code 

Is the model source code publicly accessible or open for 
inspection? 

yes 

  Please specify yes 

Development plan  There is a development plan? no 

  Please specify no 

Version control 
system 

 There is a version control system? no 

  Please specify no 

Management plan Is there a management plan? no 

  Please specify no 

POLICY SUPPORT 

Policy Role Brief description (benefit and potential for policy assesment).  yes 
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Item  Explanation  MIDAS 
export 

Policy Cycle This model contribute to the following policy cycle: 
ANTICIPATION (foresight and horizon scanning), FORMULATION 
(impact assessments), IMPLEMENTATION 
(with monitoring), EVALUATION 
(ex-post evaluations) 

yes 

Policy Areas This model can contribute to the following policy areas: 
Agriculture and rural development; Banking and financial 
services; Business and industry; Climate action; Competition; 
Consumers; Customs; Digital economy and society; EU 
enlargement; Economy, finance and the euro; Education and 
training; Employment and social affairs; Energy; Environment; 
European neighbourhood policy; Humanitarian aid and civil 
protection; Institutional affairs; International cooperation and 
development; Maritime affairs and fisheries; Public health; 
Regional policy; Research and innovation; Single market; 
Taxation; Trade; Transport 

yes 

Impact Assessments Brief description with links to resources/publications yes 

References  

Studies That Uses The 
Model Or Its Results 

 Please enter references yes 

Peer Review For 
Model Validation 

 Please enter references yes 

Model 
Documentation 

 Please enter link or references yes 

Other Related 
Documents 

 Please enter link (website, GitHub etc) or references yes 

 


