Modelling Individual Decisions to Support
the European Policies Related to Agriculture

Another MIND STEP publication out!

Check out the new publication of MIND STEP! uploaded on 6 may 2023

The new MIND STEP publication is available on the Journal of Agricultural Ecnomics. The title is: Surrogate modelling of a detailed farmā€level model using deep learning. This Opan Access publication was uploaded on 6 May 2023.

Abstract:Technological change co-determines agri-environmental performance and farm structural transformation. Meaningful impact assessment of related policies can be derived from farm-level models that are rich in technology details and environmental indicators, integrated with agent-based models capturing dynamic farm interaction. However, such integration faces considerable challenges affecting model development, debugging and computational demands in application. Surrogate modelling using deep learning techniques can facilitate such integration for simulations with broad regional coverage. We develop surrogates of the farm model FarmDyn using different architectures of neural networks. Our specifically designed evaluation metrics allow practitioners to assess trade-offs among model fit, inference time and data requirements. All tested neural networks achieve a high fit but differ substantially in inference time. The Multilayer Perceptron shows almost top performance in all criteria but saves strongly on inference time compared to a Bi-directional Long Short Term Memory.

You can access it here